
Time Series Forecasting Methodology for
Multiple–Step–Ahead Prediction

N. G. Pavlidis, D. K. Tasoulis, M. N. Vrahatis
Department of Mathematics,

University of Patras Artificial Intelligence Research Center (UPAIRC),
University of Patras, GR–26110 Patras, Greece.

{npav,dtas,vrahatis}@math.upatras.gr

ABSTRACT
This paper presents a time series forecasting methodology
and applies it to generate multiple–step–ahead predictions
for the direction of change of the daily exchange rate of
the Japanese Yen against the US Dollar. The proposed
methodology draws from the disciplines of chaotic time se-
ries analysis, clustering, and artificial neural networks. In
brief, clustering is applied to identify neighborhoods in the
reconstructed state space of the system; and subsequently
neural networks are trained to model the dynamics of each
neighborhood separately. The results obtained through this
approach are promising.

KEY WORDS
Computational Intelligence, Forecasting, Clustering, Neu-
ral Networks

1 Introduction

System identification and time–series prediction are em-
bodiments of the old problem of function approximation.
The classic approach is to build an explanatory model from
first principles and measure initial data [3]. Unfortunately,
this approach is not always feasible. Here we assume
knowledge of the scalar time series only. The most com-
mon approach consists of two steps:

• identify a model capable of performing one–step–
ahead predictions of the time series, and

• generate a long time–series by iterated prediction.

Principe et al. [14] report that in many cases, this approach
fails. The reason is that the selected model has not learned
the chaotic attractor despite the fact that it is capable of per-
forming accurate one–step–ahead prediction. In the work
of Principe et al. [15] a self–organizing map is used to par-
tition the input space. This is a step toward a model that
makes accurate short–term predictions and learns the out-
lines of the chaotic attractor.

In this paper we propose a time series forecasting
methodology that draws from the disciplines of chaotic
time series analysis, clustering, and artificial neural net-
works, and apply it to perform multiple–step–ahead pre-
dictions of the time series of the daily exchange rate of the

Japanese Yen against the US Dollar. The proposed method-
ology is related to the notion of local approximation [3] and
has been previously applied to generate one–step–ahead
predictions for two financial time–series [12].

The remaining paper is organized as follows: Sec-
tion 2 describes analytically the proposed forecasting
methodology; Section 3 is devoted to implementation de-
tails and the numerical results obtained. Conclusions and
ideas for future research are provided in Section 4.

2 Proposed Methodology

Instead of constructing a global model for a chaotic time
series, Farmer and Sidorowich [3] proposed to construct
models for neighborhoods of the state space, an approach
known as local approximation. In brief, to predict x(t+T)
primarily, the m nearest neighbors of the state vector x(t),
i.e. the m states x(t′) that minimize the distance ‖x(t) −
x(t′)‖, are found. Then, a local predictor is constructed
using x(t′) as points of the domain and x(t′ +T) as points
of the range. Finally, the local predictor is used to forecast
x(t+T). The technique of local linear models is appealing
for modeling complex time–series due to the weak assump-
tions required and its intrinsic simplicity. This approach
is closely related to differential topology and it is more
general than the global approach, in the sense that fewer
statistical and geometric assumptions about the data are
required. Computational intelligence methods have been
used both as means of partitioning the input space, and as
local predictors [4, 10, 15, 19].

Our approach is based on partitioning the input
space through the unsupervised k–windows clustering al-
gorithm [17]. This algorithm has the ability to endoge-
nously determine the number of clusters present in the
dataset. Once the clustering process is complete, a feed-
forward neural network acts as the local predictor for each
cluster. In brief, the proposed methodology consists of the
following steps:

1. determine the minimum embedding dimension for
phase–space reconstruction [7],

2. identify the clusters present in the training set,

3. for each cluster in the training set train a different
feedforward neural network using for training pat-
terns, patterns from that cluster solely.

4. To perform multiple–step–ahead prediction on the test
set:

(a) assign the input pattern to the appropriate clus-
ter,

(b) use the corresponding trained neural network to
generate the prediction,

(c) use the predicted value to formulate the next pat-
tern.

2.1 Unsupervised k–windows Algorithm

For completeness purposes we briefly outline the workings
of the unsupervised k–windows (UKW) clustering algo-
rithm [17].

Intuitively, the k-windows algorithm tries to place a
d-dimensional window containing all patterns that belong
to a single cluster; for all clusters present in the dataset.
At first, k points are selected (possibly in a random man-
ner). The k initial d–ranges (windows), of size a, have
as centers these points. Subsequently, the patterns that lie
within each d-range are identified. Next, the mean of the
patterns that lie within each d–range (i.e. the mean value
of the d–dimensional points) is calculated. The new posi-
tion of the d–range is such that its center coincides with the
previously computed mean value. The last two steps are re-
peatedly executed as long as the increase in the number of
patterns included in the d–range that results from this mo-
tion satisfies a stopping criterion. The stopping criterion is
determined by a variability threshold θv that corresponds to
the least change in the center of a d–range that is acceptable
to recenter the d–range.

Once movement is terminated, the d–ranges are en-
larged in order to capture as many patterns as possible from
the cluster. Enlargement takes place at each dimension sep-
arately. The d–ranges are enlarged by θe/l percent at each
dimension, where θe is user defined, and l stands for the
number of previous successful enlargements. After the en-
largement in one dimension is performed, the window is
moved, as described above. Once movement terminates,
the proportional increase in the number of patterns included
in the window is calculated. If this proportion does not ex-
ceed the user–defined coverage threshold, θc, the enlarge-
ment and movement steps are rejected and the position and
size of the d–range are reverted to their prior to enlarge-
ment values. Otherwise, the new size and position are ac-
cepted. If enlargement is accepted for dimension d′ > 2,
then for all dimensions d′′, such that d′′ < d′, the enlarge-
ment process is performed again assuming as initial posi-
tion the current position of the window. This process ter-
minates if enlargement in any dimension does not result in
a proportional increase in the number of patterns included
in the window beyond the threshold θc.

UKW generalizes the original algorithm. The key
idea to automatically determine the number of clusters,
is to apply the k-windows algorithm using a sufficiently
large number of initial windows. The windowing tech-
nique of the k-windows algorithm allows for a large num-
ber of initial windows to be examined, without any signif-
icant overhead in time complexity. Once all the processes
of movement and enlargement for all windows are termi-
nates, all overlapping windows are considered for merging.
The merge operation is guided by a merge threshold θm.
Having identified two overlapping windows, the number of
patterns that lie in their intersection is calculated. Next the
proportion of this number to the total patterns included in
each window is calculated. If the mean of these two pro-
portions exceeds θm, then the windows are considered to
belong to a single cluster and are merged, otherwise not.

The output of the algorithm is a number of sets that
define the final clusters discovered in the original dataset.

2.2 Artificial Neural Networks

Artificial Feedforward Neural Networks (FNNs) are paral-
lel computational models comprised of densely intercon-
nected, simple, adaptive processing units, characterized by
an inherent propensity for storing experiential knowledge
and rendering it available for use. Two critical parameters
for the successful application of FNNs are the appropriate
selection of network architecture and training algorithm.
The problem of identifying the optimal network architec-
ture for a specific task remains up to date an open and chal-
lenging problem. For the general problem of function ap-
proximation, the universal approximation theorem proved
in [5, 20] states that:

Theorem 2.1 Standard Feedforward Networks with only a
single hidden layer can approximate any continuous func-
tion uniformly on any compact set and any measurable
function to any desired degree of accuracy.

An immediate implication of the above theorem is that any
lack of success in applications must arise from inadequate
learning, insufficient number of hidden units, or the lack of
a deterministic relationship between the input and the tar-
get. A second theorem proved in [13] provides an upper
bound for the architecture of an FNN destined to approxi-
mate a continuous function defined on the hypercube in Rn.

Theorem 2.2 On the unit cube in Rn any continuous func-
tion can be uniformly approximated, to within any error by
using a two hidden layer network having 2n + 1 units in
the first layer and 4n + 3 units in the second layer.

The efficient supervised training of FNNs is the sub-
ject of considerable ongoing research and numerous algo-
rithms have been proposed to this end. Supervised training
amounts to the global minimization of the network error
function E. The rapid computation of a set of weights that

minimizes this error is a rather difficult task since, in gen-
eral, the number of network weights is large and the re-
sulting error function generates a complex surface in the
weight space, characterized by multiple local minima and
broad flat regions adjoined to narrow steep ones. Next,
a brief exposition of the training algorithms considered is
provided.

3 Numerical Results

We have applied the previously described methodology to
the daily (interbank rate) time–series of the Japanese Yen
against the U.S. Dollar. The series consists of 1827 ob-
servations spanning a period of five years, from the 1st of
January 1998 until the 1st of January of 2003. The series is
freely available from www.oanda.com. The training set
contained the first 1500 patterns, while the remaining pat-
terns, covering approximately the final year of data, were
assigned to the test set. Numerical experiments were per-
formed using a Clustering C++ and a Neural Network C++
Interface built under the Fedora Linux 1.0 operating system
using the GNU compiler collection (gcc) version 3.3.2.

Applying the method of “False Nearest Neigh-
bors” [7] on the training set we observed that the propor-
tion of false nearest neighbors drops sharply to the value of
0.334% for an embedding dimension of d = 5. For larger
values of d the proportion of false nearest neighbors lies
in the neighborhood of 0.067%, up to d = 19 for which
the number of false nearest neighbors drops to zero. The
embedding dimension chosen for this series was 5.

Having identified the appropriate embedding dimen-
sion, the UKW algorithm is employed to compute the clus-
ters present in the training set. Pattern n is of the form
pn = [xn, xn+1, . . . , xn+d−1, xn+d, . . . , xn+d+h−1] , n =
1, . . . , 1500, and h = 2, 5 represents the forecasting
horizon. In other words, the values to be predicted
[xn+d, . . . , xn+d+h−1], are components of the pattern vec-
tors employed by the UKW algorithm. For the two–step–
ahead prediction problem, a total of 15 clusters were iden-
tified in the training set, while for the five–step–ahead task,
UKW detected 28 clusters in the training set. To identify
the cluster to which a pattern from the test set belongs, it
is first necessary to find the window whose center is clos-
est (in terms of Euclidean distance) to that pattern. The
pattern is then assigned to the cluster to which this win-
dow belongs. Since the future values of the series are un-
known for the patterns of the test set, distances from win-
dow centers are computed by excluding the components
[xn+d, . . . , xn+d+h−1] of the window center vector from
the computation of distances.

As previously mentioned, the issue of selecting the
optimal network architecture for a particular task, remains
up to date an open and challenging problem. After exper-
imentation with networks with one and more hidden lay-
ers, we concluded that 5–5–4–1 constitutes an appropriate
architecture for the FNNs used as local predictors. The
FNNs associated with each cluster detected in the train-

ing set were trained to minimize the mean squared error of
one–step–ahead prediction. Four training algorithms were
considered:

• Adaptive On–Line Back Propagation (AOBP) [8].

• Scaled Conjugate Gradient Descent (SCG) [11],

• Improved Resilient Back Propagation (iRPROP) [6],

• Resilient Back Propagation (RPROP) [16], and

• Back Propagation with Variable Stepsize (BPVS) [9].

As an additional evaluation criterion, the performance
of the FNNs on the task of two– and five–step–ahead pre-
diction on the training set was monitored. The accuracy
of the multiple–step–ahead forecasts was assessed by the
percentage of correct sign prediction [4, 18]. This measure
captures the percentage of forecasts in the test set for which
the following inequality is satisfied:

(̂xt+d+h−1 − xt+d−1) · (xt+d+h−1 − xt+d−1) > 0, (1)

where, ̂xt+d+h−1 represents the prediction generated by
the FNN, xt+d+h−1 refers to the true value of the exchange
rate at period t + d + h − 1 and, finally, xt+d−1 stands
for the value of the exchange rate at the current period,
t + d − 1. Correct sign prediction in effect captures the
percentage of profitable trades enabled by the forecasting
system employed [18].

Having trained all the FNNs for 100 epochs, their
performance on the task of two– and five–step–ahead pre-
diction was evaluated on the test set. For the clusters to
which patterns from the test set were assigned, Tables 1, 2
and 3 report the minimum (min), mean, maximum (max)
performance with respect to correct sign prediction. Also
the standard deviation (st.dev), as well as, the performance
of the FNN that managed the highest multiple–step–ahead
sign prediction on the train set (best ms) is reported. The
number of test patterns that were assigned to each cluster is
reported next to the cluster index. Due to space limitations,
the results for one cluster containing four patterns from the
test set is not reported in Table 1 for the two–step–ahead
problem, while for the five–step–ahead task the results for
three clusters containing one, four and five patterns respec-
tively are not reported in Tables 2, 3.

Primarily, it is important to note that patterns from
the test set were assigned to a subset of the total number
of clusters detected in the training set. For the two–step–
ahead prediction task, patterns from the test set were as-
signed to 9 out of the 15 clusters discovered in the training
set. For the five–step–ahead task, patterns from the test set
were assigned to 14 out of the 28 clusters. This implies
that only a subset of the information contained in the train-
ing set was considered relevant for predicting the evolution
of the series in the test set. Inspecting the results reported
in Tables 1–3, it is evident that the degree of predictabil-
ity varies substantially among the different clusters.

Cluster 5: 13 patterns
min mean max st.dev. best ms

AOBP 0.46 0.46 0.46 0.0 0.46
SCG 0.46 0.49 0.61 0.05 0.53
iRPROP 0.46 0.46 0.46 0.0 0.46
RPROP 0.46 0.46 0.46 0.0 0.46
BPVS 0.46 0.53 0.61 0.07 0.46

Cluster 6: 39 patterns
min mean max st.dev. best ms

AOBP 0.46 0.56 0.61 0.05 0.46
SCG 0.43 0.57 0.61 0.07 0.61
iRPROP 0.56 0.60 0.61 0.01 0.61
RPROP 0.61 0.61 0.61 0.0 0.61
BPVS 0.35 0.55 0.66 0.10 0.61

Cluster 7: 64 patterns
min mean max st.dev. best ms

AOBP 0.37 0.41 0.43 0.01 0.42
SCG 0.45 0.45 0.45 0.0 0.45
iRPROP 0.40 0.44 0.45 0.01 0.40
RPROP 0.45 0.45 0.45 0.0 0.45
BPVS 0.40 0.43 0.46 0.02 0.40

Cluster 8: 42 patterns
min mean max st.dev. best ms

AOBP 0.38 0.46 0.5 0.04 0.38
SCG 0.35 0.50 0.54 0.06 0.35
iRPROP 0.52 0.52 0.54 0.00 0.52
RPROP 0.5 0.52 0.54 0.01 0.54
BPVS 0.38 0.48 0.52 0.04 0.38

Cluster 9: 60 patterns
min mean max st.dev. best ms

AOBP 0.51 0.57 0.61 0.03 0.60
SCG 0.46 0.50 0.58 0.03 0.58
iRPROP 0.43 0.45 0.48 0.01 0.45
RPROP 0.43 0.47 0.48 0.01 0.48
BPVS 0.43 0.43 0.48 0.01 0.48

Cluster 10: 23 patterns
min mean max st.dev. best ms

AOBP 0.47 0.53 0.56 0.03 0.52
SCG 0.47 0.54 0.56 0.03 0.56
iRPROP 0.52 0.56 0.60 0.03 0.56
RPROP 0.52 0.54 0.60 0.03 0.52
BPVS 0.52 0.55 0.60 0.02 0.56

Cluster 11: 25 patterns
min mean max st.dev. best ms

AOBP 0.56 0.61 0.72 0.06 0.56
SCG 0.52 0.52 0.6 0.02 0.52
iRPROP 0.52 0.52 0.6 0.02 0.60
RPROP 0.52 0.52 0.52 0.0 0.52
BPVS 0.44 0.56 0.72 0.10 0.44

Cluster 12: 50 patterns
min mean max st.dev. best ms

AOBP 0.42 0.45 0.50 0.03 0.48
SCG 0.44 0.51 0.52 0.02 0.44
iRPROP 0.52 0.52 0.56 0.01 0.56
RPROP 0.52 0.52 0.52 0.0 0.52
BPVS 0.44 0.51 0.54 0.03 0.44

Table 1. Results for the problem of 2–step ahead prediction

On the task of two–step ahead prediction (Table 1), no
FNN was able to achieve a correct sign prediction exceed-
ing 50% for the patterns that were classified to cluster 7.
A similar behavior is observed for clusters 17, 18, 19, and
20 for the five–step–ahead prediction task. On the other
hand, the minimum correct sign prediction exceeds 50%

Cluster 11: 35 patterns
min mean max st.dev. best ms

AOBP 0.51 0.53 0.54 0.01 0.54
SCG 0.34 0.48 0.54 0.07 0.45
iRPROP 0.48 0.54 0.62 0.04 0.48
RPROP 0.48 0.51 0.54 0.01 0.51
BPVS 0.25 0.44 0.62 0.11 0.45

Cluster 12: 17 patterns
min mean max st.dev. best ms

AOBP 0.35 0.42 0.52 0.07 0.52
SCG 0.17 0.27 0.35 0.05 0.29
iRPROP 0.29 0.43 0.52 0.10 0.52
RPROP 0.17 0.33 0.52 0.13 0.52
BPVS 0.17 0.40 0.52 0.13 0.52

Cluster 13: 9 patterns
min mean max st.dev. best ms

AOBP 0.22 0.24 0.33 0.04 0.22
SCG 0.22 0.23 0.33 0.03 0.22
iRPROP 0.22 0.28 0.44 0.07 0.22
RPROP 0.22 0.26 0.33 0.05 0.33
BPVS 0.22 0.36 0.44 0.07 0.33

Cluster 14: 75 patterns
min mean max st.dev. best ms

AOBP 0.54 0.56 0.57 0.0 0.56
SCG 0.49 0.55 0.58 0.02 0.49
iRPROP 0.52 0.56 0.58 0.01 0.57
RPROP 0.54 0.56 0.58 0.01 0.57
BPVS 0.48 0.50 0.52 0.01 0.48

Cluster 15: 64 patterns
min mean max st.dev. best ms

AOBP 0.59 0.60 0.60 0.0 0.59
SCG 0.57 0.60 0.60 0.0 0.60
iRPROP 0.56 0.60 0.64 0.02 0.60
RPROP 0.56 0.60 0.62 0.01 0.59
BPVS 0.57 0.60 0.64 0.01 0.60

Cluster 16: 15 patterns
min mean max st.dev. best ms

AOBP 0.46 0.46 0.46 0.0 0.46
SCG 0.4 0.46 0.46 0.02 0.46
iRPROP 0.33 0.45 0.53 0.05 0.46
RPROP 0.26 0.41 0.46 0.06 0.40
BPVS 0.46 0.48 0.53 0.03 0.46

Cluster 17: 16 patterns
min mean max st.dev. best ms

AOBP 0.25 0.25 0.25 0.0 0.25
SCG 0.18 0.40 0.5 0.12 0.18
iRPROP 0.25 0.28 0.43 0.06 0.25
RPROP 0.18 0.35 0.5 0.11 0.18
BPVS 0.25 0.29 0.43 0.07 0.25

Cluster 18: 9 patterns
min mean max st.dev. best ms

AOBP 0.33 0.33 0.33 0.0 0.33
SCG 0.11 0.13 0.33 0.07 0.11
iRPROP 0.11 0.26 0.44 0.11 0.22
RPROP 0.11 0.18 0.33 0.07 0.11
BPVS 0.11 0.31 0.33 0.07 0.33

Cluster 19: 17 patterns
min mean max st.dev. best ms

AOBP 0.35 0.39 0.41 0.02 0.41
SCG 0.17 0.23 0.29 0.02 0.23
iRPROP 0.17 0.30 0.41 0.08 0.41
RPROP 0.23 0.32 0.41 0.04 0.41
BPVS 0.17 0.25 0.29 0.04 0.29

Table 2. Results for the problem of 5–step ahead prediction

Cluster 20: 10 patterns
min mean max st.dev. best ms

AOBP 0.20 0.26 0.30 0.05 0.20
SCG 0.20 0.24 0.40 0.06 0.30
iRPROP 0.20 0.31 0.40 0.05 0.30
RPROP 0.20 0.26 0.30 0.05 0.30
BPVS 0.30 0.30 0.30 0.0 0.30

Cluster 21: 40 patterns
min mean max st.dev. best ms

AOBP 0.55 0.55 0.55 0.0 0.55
SCG 0.55 0.58 0.60 0.01 0.55
iRPROP 0.60 0.60 0.62 0.00 0.60
RPROP 0.57 0.60 0.62 0.01 0.60
BPVS 0.32 0.52 0.62 0.08 0.47

Table 3. Results for the problem of 5–step ahead prediction
– continued

for most training algorithms in clusters 10 and 11 of Ta-
ble 1 and clusters 14, 15, and 21 of Tables 2 and 3. Further-
more, it is important to note that in most cases the FNNs
that achieved the best performance on the task of two– and
five–step–ahead prediction on the training set were rarely
the ones that exhibited the highest performance on the test
set. Selecting among the trained FNNs for each cluster
the one with the highest performance with respect to min-
imum, mean, maximum and highest multi–step–prediction
accuracy on the training set, respectively, we computed the
mean forecasting performance achieved on the entire test
set. These results are illustrated in Table 4 for the two–
and five–step–ahead tasks. As expected the accuracy of
the forecasts deteriorates as the forecasting horizon is ex-
panded.

min mean max best ms
2–step–ahead 0.51 0.53 0.575 0.55
5–step–ahead 0.48 0.51 0.56 0.51

Table 4. Overall forecasting accuracy achieved by selecting
the best performing FNN with respect to min, mean, max,
and best ms, respectively

Since the embedding dimension used to construct
the input patterns for the FNNs acting as local predictors
was five, to perform six–step–ahead prediction through the
aforementioned approach, implies that all the elements of
input vector are previous outputs of the model. In other
words, the problem becomes one of iterated (closed–loop)
prediction. We have tested the performance of the system
on this task, but the model fails to keep track of the evo-
lution of the series. In effect beyond a certain number of
iterated predictions the output of the model converges, to a
constant value, implying that the system has been trapped
in a fixed point. Enhancing the model so as to be able
to overcome this limitation is a very interesting problem
which we intend to address in future work.

4 Conclusions

This paper presents a time series forecasting methodology
which draws from the disciplines of chaotic time series
analysis, clustering, and artificial neural networks. The
methodology consists of four stages. Primarily the mini-
mum dimension necessary for phase space reconstruction
through time–delayed embedding is calculated using the
method of false nearest neighbors. To identify neighbor-
hoods in the state space, time delayed vectors are subjected
to clustering through the UKW algorithm. This algorithm
has the capability to endogenously determine the number of
clusters present in a dataset. Subsequently, a different feed-
forward neural network is trained on each cluster. Having
completed the training of the networks, the performance
of the model on the task of multiple–step–ahead predic-
tion is evaluated on the test set. Beyond this point the sys-
tem uses both predicted and true values of the series in or-
der to formulate the patterns that will be used to forecast
the evolution of the series. This methodology was applied
to generate two– and five–step–ahead predictions for the
time–series of the daily exchange rate of the Japanese Yen
against the US Dollar for a period of time which covers ap-
proximately the final year of available data. The obtained
results were promising.

In future work we intend to address the issue of it-
erated prediction. To this end we aim to incorporate the
test proposed by Diks et al. [2] so as to obtain a measure
of the extent to which the developed prediction system has
the ability to accurately capture the attractor of the mea-
sured data, during the training process [1]. We also intend
to consider recurrent neural networks.

References

[1] R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and
C. M. van den Bleek, Learning of chaotic attractors
by neural networks, Neural Computation 12 (2000),
no. 10, 2355–2383.

[2] C. Diks, W. R. van Zwet, F. Takens, and J. DeGoede,
Detecting differences between delay vector distribu-
tions, Physical Review E 53 (1996), no. 3, 2169–
2176.

[3] J. D. Farmer and J. J. Sidorowich, Predicting chaotic
time series, Physical Review Letters 59 (1987), no. 8,
845–848.

[4] L. C. Giles, , S. Lawrence, and A. H. Tsoi, Noisy
time series prediction using a recurrent neural net-
work and grammatical inference, Machine Learning
44 (2001), no. 1/2, 161–183.

[5] K. Hornik, Multilayer feedforward networks are uni-
versal approximators, Neural Networks 2 (1989),
359–366.

[6] C. Igel and M. Hüsken, Improving the Rprop learning
algorithm, Proceedings of the Second International
ICSC Symposium on Neural Computation (NC 2000)
(H. Bothe and R. Rojas, eds.), ICSC Academic Press,
2000, pp. 115–121.

[7] M. B. Kennel, R. Brown, and H. D. Abarbanel, Deter-
mining embedding dimension for phase–space recon-
struction using a geometrical construction, Physical
Review A 45 (1992), no. 6, 3403–3411.

[8] G.D. Magoulas, V.P. Plagianakos, and M.N. Vra-
hatis, Adaptive stepsize algorithms for on-line train-
ing of neural networks, Nonlinear Analysis, T.M.A.
47 (2001), no. 5, 3425–3430.

[9] G.D. Magoulas, M.N. Vrahatis, and G.S. An-
droulakis, Effective backpropagation training with
variable stepsize, Neural Networks 10 (1997), no. 1,
69–82.

[10] T. P. Meyer and N. H. Packard, Local forecasting of
high dimensional chaotic dynamics, Nonlinear Mod-
elling and Forecasting (M. Casdagli and S. Eubank,
eds.), Addison-Wesley, 1992, pp. 249–264.

[11] M. Moller, A scaled conjugate gradient algorithm for
fast supervised learning, Neural Networks 6 (1993),
525–533.

[12] N. G. Pavlidis, D. K. Tasoulis, and M. N. Vrahatis, Fi-
nancial forecasting through unsupervised clustering
and evolutionary trained neural networks, Proceed-
ings of the Congress on Evolutionary Computation
(CEC 2003), 2003, pp. 2314–2321.

[13] A. Pinkus, Approximation theory of the MLP model
in neural networks, Acta Numerica (1999), 143–195.

[14] J. C. Principe, A. Rathie, and J. M. Kuo, Prediction of
chaotic time series with neural networks and the issue
of dynamic modeling, Int. J. of Bifurcation and Chaos
2 (1992), no. 4, 989–996.

[15] J. C. Principe, L. Wang, and M. A. Motter, Local dy-
namic modeling with self–organizing maps and appli-
cations to nonlinear system identification and control,
Proceedings of the IEEE, no. 6, 1998, pp. 2240–2257.

[16] M. Riedmiller and H. Braun, A direct adaptive
method for faster backpropagation learning: The
rprop algorithm, Proceedings of the IEEE Interna-
tional Conference on Neural Networks, San Fran-
cisco, CA, 1993, pp. 586–591.

[17] M.N. Vrahatis, B. Boutsinas, P. Alevizos, and
G. Pavlides, The new k-windows algorithm for im-
proving the k-means clustering algorithm, Journal of
Complexity 18 (2002), 375–391.

[18] S. Walczak, An empirical analysis of data require-
ments for financial forecasting with neural networks,
Journal of Management Information Systems 17
(2001), no. 4, 203–222.

[19] A. S. Weigend, M. Mangeas, and A. N. Srivastava,
Nonlinear gated experts for time series: Discovering
regimes and avoiding overfitting, International Jour-
nal of Neural Systems 6 (1995), 373–399.

[20] H. White, Connectionist nonparametric regression:
Multilayer feedforward networks can learn arbitrary
mappings, Neural Networks 3 (1990), 535–549.

