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Abstract

We present a reliable and portable software package for computing zeros of analytic functions. The package is named ZEAL
(ZEros of Analytic functions). Given a rectangular regighin the complex plane and a functigh: W — C that is analytic
in W and does not have zeros on the boundarWoZEAL localizes and computesd| the zeros off that lie insideW, together
with their respective multiplicities. ZEAL is based on the theory of formal orthogonal polynomials. It proceeds by evaluating
numerically certain integrals along the boundaryVofinvolving the logarithmic derivativef’/f and by solving generalized
eigenvalue problems. The multiplicities are computed by solving a linear system of equations that has Vandermonde structure.
ZEAL is written in Fortran 900 2000 Elsevier Science B.V. All rights reserved.
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Programming language used:ortran 90 Restrictions on the complexity of the problem

The function f has to be analytic in the rectangular regitn
Memory required to execute with typical dataess than 500 Kbytes ~ Both f and its derivativef” are needed. The edgesfhave to be
parallel to the coordinate axes. The boundaryibis not allowed
to contain zeros off. Since, in the sequely is repeatedly subdi-
vided, the boundaries of the obtained subregions should not contain
zeros of f. The possibility of such a situation can be minimized if
W is not symmetric with respect to the axes. ZEAL is not specifi-
) cally designed to handle clusters of zeros. Howeve, lifas one or
Has the code been vectorisedRo more clusters of zeros and the input parameRs_STOHs given

a proper (problem-dependent) value, then ZEAL will compute ap-
No. of bytes in distributed program, including test data, etc.. proximations for the centres of the clusters. The “multiplicity” of a
252832 centre is equal to the total number of zeros that belong to the corre-

sponding cluster.

No. of bits in a word: 32 bits

No. of processors useddne

Distribution format: uuencoded compressed tar file _ o
Typical running time

The following table gives the running times (in seconds) for the test

Keywords: Analytic functions, zeros, multiplicities, quadrature ;
yw y P d runs of Section 4:

method, formal orthogonal polynomials, isolation of zeros, compu-
tation of zeros

System library Code included in ZEAL

Nature of physical problem Testrun #1 0.13(0.13) 0.18 (0.14)

ZEAL is a general purpose packgge for co‘mputlng‘ zeros of ana- Test run #2 1.82 (1.04) 1.65 (1.14)

lytic functions. It can be used in various physical applications. More

precisely, given a rectangular regio¥i in the complex plane and Testrun #3 1.55(1.14) 1.60 (1.42)

an analytic functionf : W — C, such that no zero of_ I|_es _on the Test run #4 152 (1.15) 1.62 (1.35)

boundary o, ZEAL calculates all the zeros g¢fthat lie insideW,

together with their respective multiplicities. Testrun #5 0.65 (0.41) 1.62(0.37)
Testrun #6 1.56 (0.56) 1.54 (0.53)

Method of solution
The package ZEAL uses an integral formula to compute the total

number of zeros (counting multiplicities) of that lie insideW . The calculations have been done on a SUN SPARC Ultra-2
Then, by using the same procedure, the redlors subdivided into m1170. We have used the subroutine ETIME. The parenthesized
subregions that contain at mat zeros (again counting multiplic- ~ running times correspond to optimized compiling.

ities), where the value o#/ is specified by the user. Approxima- ZEAL uses a number of routines from the BLAS and LAPACK

tions for these zeros are calculated via an algorithm that is based libraries. These Fortran 77 routines are distributed together with
on numerical integration along the boundaries of the subregions and ZEAL to enable the user to compile them in case the BLAS and
generalized eigenvalue problems. The multiplicities of the zeros are LAPACK libraries are not available on his/her computer system.

calculated by solving a Vandermonde system. The approximations The column labelled “System library” gives the running times in
for the zeros are refined via the modified Newton’s method, which case ZEAL uses the BLAS and LAPACK libraries that are installed

takes into account the multiplicity of a zero and converges quadrat- on our SUN computer. The column labelled “Code included in
ically. ZEAL” gives the running times in case the Fortran 77 routines dis-
tributed with ZEAL are used.

LONG WRITE-UP

1. Introduction

Let W be a rectangular region i3, f: W — C analytic in the closure oV andy the (positively oriented)
boundary ofW. Suppose thay does not pass through any zero ofand that the edges of are parallel to the
coordinate axes. We present a reliable and portable software package for conafiutiegzeros off that lie in
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the interior ofy, together with their respective multipliciti€sOur package is named ZEAL (ZEros of Analytic
functions) and is written in Fortran 90.

Our approach to the problem of computing all the zeros of an analytic function that lie in the interior of a
Jordan curve can be seen as a continuation of the pioneering work of Delves and Lyness [1] and the corresponding
Fortran 77 implementation written by Botten, Craig and McPhedran [2].

Let N denote the total number of zeros ffthat lie in the interior ofy, i.e., the number of zeros where each
zero is counted according to its multiplicity. Suppose from now on shat 0. Delves and Lyness considered the
sequences, ..., Zy that consists of all the zeros ¢f that lie insidey. Each zero is repeated according to its
multiplicity. An easy calculation shows that the logarithmic derivatiV¢f has a simple pole at each zero pf
with residue equal to the multiplicity of the zero. Cauchy’s Theorem implies that

1 [f@
T 2ni ) f(2)
14
This formula enables us to calculadtevia numerical integration. Methods for the determination of zeros of analytic
functions that are based on the numerical evaluation of integrals are qabedature method# review of such
methods is given by loakimidis [3]. Delves and Lyness considered the integrals

dz. 1)

1 1@
sy i=—— | ZP dz, =0,12,....
P omi @ P
¥
The residue theorem implies that thgs are equal to thélewton sumsf the unknown zeros,
sp=2ZV+---+Zy, p=0,12.... )

Theses,’s can again be calculated via numerical integration atpng
Delves and Lyness considered the monic polynomial of dejré®at has zerogy, ..., Zy,

N
Pn(2) 1=1_[(Z—Zk) =IZN+O'1ZN_1+-~-—|—O-N,
k=1

They calledPy (z) theassociated polynomidbr the interior ofy. Its coefficients can be calculated via Newton's
identities. An elegant proof is given by Carpentier and Dos Santos [4].

Theorem 1 (Newton'’s identities).

s1+01=0,

s2+s5101+202=0,

SN +Sy_101+---+s1oy_1+Nony=0.

In this way they reduced the problem to the easier problem of computing the zeros of a polynomial.
Unfortunately, the map from the Newton sums. . ., sy to the coefficients, ..., on is usually ill-conditioned.
Also, the polynomials that arise in practice may be such that small changes in the coefficients produce much larger

6 The assumptions that is a rectangular region in the complex plane and that the edges of its boyndagyparallel to the coordinate axes
are of course not essential from a theoretical point of view. They merely represent the specific choice that we have made while developing our
package. In fact, the algorithm for computing all the zerog dhat lie in the interior ofy that we will discuss in Section 2 can be used for an
arbitrary simply connected regidif and an arbitrary positively oriented Jordan cupe
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changes in some of the zeros. This ill-conditioning of the map between the coefficients of a polynomial and its
zeros has been investigated by Wilkinson [5]. The location of the zeros determines their sensitivity to perturbations
of the coefficients. Multiple zeros and very close zeros are extremely sensitive, but even a group of moderately
close zeros can result in severe ill-conditioning. Wilkinson states that ill-conditioning in polynomials cannot be
overcome without, at some stage of the computation, resorting to high precision arithmetic.

If £ has many zeros in the interior ¢f, then the associated polynomial is of high degree and could be very
ill-conditioned. Therefore, ifV is large, one has to calculate the coefficiests. .., oy, and thus the integrals
s1,...,8N, very accurately. To avoid the use of high precision arithmetic and to reduce the number of integrand
evaluations needed to approximate hés, Delves and Lyness suggested to construct and solve the associated
polynomial only if its degree is smaller than or equal to a preassigned numb@therwise, the interior of is
subdivided or covered with a finite covering and the smaller regions are treated in turn. The chididevofves
a trade-off. IfM is increased, then fewer regions have to be scanned. Howewérisiithosen too large, then the
resulting associated polynomial may be ill-conditioned. Delves and Lyness g¢hesb.

Instead of using Newton’s identities to construct the associated polynomial, Li [6] considered (2) as a system of
polynomial equations. He used a homotopy continuation method to solve this system.

In this contribution we consider the mutually distinct zeros and their respective multipliséfegately This
is the approach that has recently been taken by Kravanja et al. [7]. Their quadrature method is a generalization of
the method of Delves and Lyness. It is again based on the numerical evaluation of integralg #han@volve
the logarithmic derivative”/f, but by using the theory of formal orthogonal polynomials they have been able to
obtain more accurate approximations for the zeros. Therefore, one may give the padmitey the number
of zeros that are calculated simultaneously, a larger value. Moreover, the algorithm of [7] does not require initial
approximations for the zeros — it is self-starting — and it provides not only accurate approximations for the zeros
but also the values of the corresponding multiplicities. Our Fortran 90 implementation of this algorithm is at the
heart of ZEAL. Numerical approximations for the integrals are computed via the well-known quadrature package
QUADPACK [8].

ZEAL's user interface is inspired by that of the Fortran 77 package ZEBEC, which is a package for computing
simple zeros of Bessel functions that has been recently written by Kravanja et al. [9]. Once the user has specified
the rectangular regio#’, the analytic functiory’ and its derivativef’, and the value of the parametéf, he/she
can ask ZEAL to compute only the total number of zerog dhat lie insideW, to isolate subregions d¥ that
contain at mosM zeros, to compute all the zeros gfthat lie insideW or to compute only a specified number of
zeros (together with their respective multiplicities). The results can be written on separate files. All these options
will be discussed in detail below.

This paper is organized as follows. In Section 2 we give an overview of the algorithm for computing zeros of
analytic functions that has been proposed by Kravanja et al. [7]. In Section 3 we discuss the structure and the user
interface of our package ZEAL. Numerical examples are presented in Section 4.

2. Computing zeros of analytic functions

Let n denote the number of mutually distinct zeros fothat lie insidey. Let z1, ..., z, be these zeros and
v1,..., v, their respective multiplicities. The quadrature method that Kravanja et al. [7] have recently proposed
generalizes the approach of Delves and Lyness. Our implementation of their algorithm forms the central part of
ZEAL. By using the theory of formal orthogonal polynomials, they have shown how the mutually distinct zeros
can be calculated by solving generalized eigenvalue problems. The valug @étermined indirectly. Onceand
71, ..., zn have been found, the problem becomes linear and the multiplieities. , v, are computed by solving
a linear system of equations that has Vandermonde structure. In this section we will give a brief summary of these
results. For more details (including proofs and a pseudo-code formulation of the algorithm), we refer to [7].
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Let P be the linear space of polynomials with complex coefficients. One defines a symmetric bilinear form

() PxP—->C
by setting
_ 1 '@ v
(@, ¥) = Zﬂiy/mz)w(z) o dz—];wm)wm ®3)

for any two polynomialg, ¢ € P. The latter equality follows from the fact th#t/f has a simple pole af with
residuev, for k =1, ...,n. Note that(-, -) can be evaluated via numerical integration algndn what follows,
we will assume that all the “inner productép, ¢) that are needed have been calculated.shet= (1, z”) for
p=0,12,.... These ordinary moments are equal to lewton sumsf the unknown zeros,

n
sp:kazf, p=0,12....
k=1

In particular,so = v1 + --- + v, = N, the total number of zeros. Hence, we may assume that the valeiof
known. LetH; be thek x k Hankel matrix

S0 S1 - Sk-1
k-1 S1
Hk = [SIH"I]p,q:O =
Sk_l ...... S2k_2

fork=1,2,.... Amonic polynomialky, of degree > 0 that satisfies
(%, 0r(2))=0, k=0,1,...,1—1, @)

is called aformal orthogonal polynomialFOP) of degree. (Observe that condition (4) is void fer=0.) The
adjectiveformal emphasizes the fact that, in general, the fgrm) does not define a true inner product. An
important consequence of this fact is that, in contrast to polynomials that are orthogonal with respect to a true
inner product, formal orthogonal polynomials need not exist or need not be unique for every degree. (For details,
see Draux [10,11], Gutknecht [12,13] or Gragg and Gutknecht [14].) If (4) is satisfied,;aadinique, thery; is

called aregular FOP and aregular index If we set

01(2) =0y +uriz+-4ur_1,2 "+ 2,

then condition (4) translates into tivele—Walkesystem

SO S1 v Si-1 Uuo,t St
51 A Ul St41

=— : (5)
Sf—q v o 85212 Ur—1t §2t—1

Hence, the regular FOP of degreg 1 exists if and only if the matri¥; is nonsingular.
The following theorem characterizas the number of mutually distinct zeros. It enables one, theoretically at
least, to calculate as rankH y .
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Theorem 2. n =rankH, ., for every nonnegative integer. In particular,n = rankHy.

Therefore H, is nonsingular whereag; is singular forr > n. Note thatH1 = [sg] is honsingular by assumption.
The regular FOP of degree 1 exists and is givewby) = z — u where
s Y k1 VkZk
S0 D k=1 Vk

is the arithmetic mean of the zeros. Theorem 2 implies that the regulap;©Pdegree: exists and tells us also
that regular FOPs of degree larger thado not exist. The polynomial, is easily seen to be

on(@)=(z—z1)" """ (z —zn). (6)
Itis the monic polynomial of degreethat hasy, . . ., z, as simple zeros. This polynomial has the peculiar property
that it is orthogonal tall polynomials (including itself),

(. on()=0, k=0,1,2,....

Oncen is known, the mutually distinct zerag, ..., z, can be calculated by solving a generalized eigenvalue
problem. Indeed, lef,= be the Hankel matrix

S1 82 - Sy
52
< —
HS =
Sp v S2n—1

Theorem 3. The eigenvalues of the penéil= — AH, are given by, ..., z,.

Oncezs, ..., z, have been found, the multiplicities, ..., v, can be computed by solving the Vandermonde
system

1 1 V1 S0
71 Zn V2 s1
] ™)
Z’{_l e Z”;l_l Vn Sp—1

Note. Vandermonde matrices are often very ill-conditioned [15,16]. In our case, however, the components of the

solution vector of (7) are known to be integers, and therefore there is no problem, even if the linear system (7)

happens to be ill-conditioned, as long as the computed approximations for the components of the solution vector
have an absolute error that is less thaih O

Theorems 2 and 3 suggest the following approach to compuatedz;, ..., z,. Start by computing the total
number of zero®V. Next, computes, ..., soy—2. As already mentioned, this can be done via numerical integration
alongy. The number of mutually distinct zeros is then calculated as the raifikyofn = rankHy . Finally, the
zeroszy, ..., Zy are obtained by solving a generalized eigenvalue problem. However, this approach has several
disadvantages:

— Theoretically theV — n smallest singular values @fy are equal to zero. In practice, this will not be the case, and

it may be difficult to determine the rank é&fy and hence the value afin case the gap between the computed

approximations for the zero singular values and the nonzero singular values is too small.
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— The approximations far, . .., z, obtained via Theorem 3 may not be very accurate. Indeed, the mapping from
the Newton sums to the zeros and their respective multiplicities,

(S07s1"-'9S2n—1)'_>(Zla-'-azl’l’vl"-"vl‘l)’ (8)

is usually very ill-conditioned. (See, e.g., the papers by Gautschi [17-19] who studied the conditioning of (8) in
the context of Gauss quadrature formulae.) A classical adage in numerical analysis says that one should avoid
the use of ordinary moments.
In [7] Kravanja et al. have proposed an algorithm that gives more accurate approximations forz,. The idea
is the following. The inner products that appear in the Hankel matif,eand H,= are related to the standard
monomial basis. Why not consider a different basis? In other words, why not try to use modified moments instead
of ordinary moments? The fact that
Hy, = [(z, Zq>]r[:]l:0 and H; =[(z", zzq)]';:llzo

suggests that one should consider the matrices

(W V)] and [(, va)] o, 9)
wherey, is a polynomial of degrekfor k =0, 1, ...,n — 1. Of course, even if one succeeds in writing Theorem 3
in terms of the matrices that appear in (9), the question remains which polynomidts choose. Kravanja
et al. [7] have found that very accurate results are obtained if one uses the formal orthogonal polynomials. In
other words, the zeros @f, (z) will be computed from inner products that involye(z), ¢1(z), ..., gu—1(z). The
value ofn will be determined indirectly. Before we can explain this in more detail, we have to say a few words
about the orthogonality properties of FOPs.

If H, is strongly nonsingular, i.e., if all its leading principal submatrices are nonsingular, then we have a full set
{90, 91, ..., @,} Of regular FOPs.

What happensiff, is not strongly nonsingular? By filling up the gaps in the sequence of existing regular FOPs it
is possible to define a sequer{ge}’ ,, with ¢, @ monic polynomial of degree such that if these polynomials are
grouped into blocks according to the sequence of regular indices, then polynomials belonging to different blocks
are orthogonal with respect ta -). More precisely, defingy, };° , as follows. Ift is a regular index, then lgt; be
the regular FOP of degreeElse definey; asg, v » wherer is the largest regular index less thaand; , is an
arbitrary monic polynomial of degree- r. In the latter case;, is called aninner polynomial These polynomials
{er}:2 o can be grouped into blocks. Each block starts with a regular FOP and the remaining polynomials are inner
polynomials. Note that the last block has infinite length. The block orthogonality property is then expressed by the
fact that theGram matrixG,, := [{¢,, gos)]j?;io is block diagonal. The diagonal blocks are nonsingular, symmetric
and zero above the main antidiagonal. (See Bultheel and Van Barel [20] for more details.)

Theorem 3 can be interpreted in the following way: the zeros of the regular FOP of dezaréde calculated by
solving a generalized eigenvalue problem. The following theorem shows that this zero/eigenvalue property holds
for all regular FOPs. This will enable us to compute regular FOPs in their product representation. The theorem
also provides a solution to the problem of how to switch from ordinary moments to modified moments. Define the
matricesGy ande(l) as

Gi:=[lpr @] 2o and G =[ler.oren)]; Lo

fork=1,2,....

Theorem 4. Letr > 1 be a regular index and let; 1, ...,z be the zeros of the regular FOg;. Then the
eigenvalues of the penc(];ﬁl) — MG, are given bygi(z:.1),...,¢1(z:,). In other words, they are given by
21— My -5 2 — 1 Wherep = s1/so.
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Corollary 1. The eigenvalues cﬂ,ﬂl) — AG, are given byz1 — i, ..., 2z, — u wherep = s1/s0.

Regular FOPs are characterized by the fact that the determinant of a Hankel matrix is different from zero, while
inner polynomials correspond to singular Hankel matrices. To decide whgthgrshould be defined as a regular
FOP or as an inner polynomial, one could calculate the determindfitafd check if it is equal to zero. However,
from a numerical point of view such a test “is equal to zero” does not make sense. Because of rounding errors
(both in the evaluation of., -) and in the calculation of the determinant) one would encounter only regular FOPs.
Strictly speaking one could say that inner polynomials are not needed in numerical calculations. However, the
opposite is true! Let us agree to call a regular R@M-conditionedf its corresponding Yule—Walker system (5) is
well-conditioned, andll-conditionedotherwise. To obtain a numerically stable algorithm, it is crucial to generate
only well-conditioned regular FOPs and to replace ill-conditioned regular FOPs by inner polynomials. Stable look-
ahead solvers for linear systems of equations that have Hankel structure are based on this principle [21-23]. In
this approach the diagonal blocksdn, are taken (slightly) larger than strictly necessary to avoid ill-conditioned
blocks.

The algorithm for calculatings, ..., z, that Kravanja et al. [7] have proposed proceeds by computing the
polynomialspg(z), ¢1(2), . . ., ¢a(z) in their product representation, starting with(z) < 1 andg1(z) < z — u.
At each step, to decide whether it is numerically feasible to generate the next polynomial in the sequence as a
regular FOP, the algorithm uses a heuristic method. By doing a large number of numerical experiments, Kravanja
et al. have reached the conclusion that their heuristic approach leads to accurate results. For more details, we refer
to [7].

How does one obtain the value@? Theorem 2 and Egs. (3) and (6) imply the following.

Theorem 5. Lett > n. Theng,(zx) =0fork=1,...,n and(z?, ¢;(z)) =0forall p > 0.

The value of: can be determined as follows. Suppose that the algorithm has just generated a (well-conditioned)
regular FORp, (z). To check whethet = r, the algorithm scans the sequence

(= W@, o @) g
If all the elements are “sufficiently small”, then the algorithm concludes that indeed and it stops. As we will
explain in Section 3, the value &PS_STOPRoNe of the input parameters of ZEAL, is used in this test.
As we have already mentioned, oncand (approximations fon, ..., z, have been found, the multiplicities
v1, ..., v, are computed by solving the Vandermonde system (7).
This concludes our discussion of the algorithm of Kravanja et al. More details can be found in [7].

3. The package ZEAL

Given arectangle whose edges are parallel to the coordinate axes and a positivelintegaake the following
approach.
— We calculate the total number of zeros that lie inside this rectangle.
— Via consecutive subdivisions we obtain a set of subrectangles, each of which containsMt reoss (counting
multiplicities).
— For each of these subrectangles, we calculate approximations for the zeros that lie inside it, together with their
respective multiplicities.
— The approximations for the zeros are refined iteratively via the modified Newton’s method.
As the functionf may have zeros on the boundary of the rectangular box specified by the user, ZEAL starts by
perturbing this box. For this purpose a tolerance is used that is taken to be proportional to a power of the machine
precision, for example, 10 times the square root of the machine precision. The box is then slightly enlarged in an
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asymmetrical way. The reason for this asymmetric perturbation is to eliminate the possibility of having a zero close
to or on any boundary of the consecutive subdivisions.

The total number of zeros of that lie inside the perturbed box is obtained in the same way as in the package
ZEBEC [9]. The real part of the integral in (1) is written as a sum of four integrals, where each integral corresponds
to one of the edges of the rectangular region. Approximations for these integrals are calculated via the adaptive
integrator DQAG from the package QUADPACK [8]. A zero near one of the edges of the rectangle causes the
integrand of the corresponding integral to have a “peak”. The closer the zero lies to the edge, the sharper this peak
is. If the zero lies on the edge, then the integral is divergent. DQAG uses adaptive strategies that enable it to cope
with such peaks efficiently. However, if a zero lies too close to an edge (the corresponding peak is too sharp), then
DQAG warns us that it has problems in calculating the integral. Our algorithm then slightly moves this edge and
restarts. By enlarging the user’'s box, we may of course include additional zeros. We have decided not to discard
any of these zeros ourselves. Rather, we provide the user with the box that eventually has been considered, all the
zeros that lie inside this box, and leave it to him/her to filter out unwanted zeros.

If the starting box (as perturbed by ZEAL) contains less thdnzeros (counting multiplicities), then
approximations for these zeros and the values of their respective multiplicities are computed via our implementation
of the algorithm of Kravanja et al. [7]. Otherwise, the longest edges of the box are halved and the box is subdivided
into two equal boxes. The number of zeros in each of these boxes is calculated via numerical integration. If DQAG
detects a zero near the inner edge, then this edge is shifted, a process that results in an asymmetric subdivision
of the box. Then the two smaller boxes are examined. A box that does not contain any zero is abandoned. If a
box contains less thaW zeros, then approximations for these zeros are calculated, together with their respective
multiplicities. A box that contains more thad zeros is subdivided again. This process is repeated until a set of
boxes has been found, each of which contains at mbgeros, and approximations for all these zeros as well as
the values of their respective multiplicities have been computed. The approximations for the zeros are then refined
via the modified Newton’s method, which takes into account the multiplicity of a zero and converges quadratically.

As we have already mentioned, if the functigrhas a zero on the boundary of the initial rectangular regfion
or on the boundary of one of the subregiondiothat the algorithm uses to isolate groups of zeros, then this may
cause numerical integration problems. In some cases the small perturbations that ZEAL applies to the edges of the
rectangular boxes do not solve these problems. QUADPACK uses certain heuristic strategies. They work very well
but nevertheless can fail. For example, we have observed that in case the function has several zeros very close (at
a distance less than 10) to the boundary, then DQAG may give a incorrect total number of zeros without giving
any warning message. We advise the user to consider an initial region that is not symmetric with respect to the axes.
In this way the possibility of having an imaginary or a real zero on the boundary of a subregion is minimized. If, in
spite of this, during consecutive subdivisions there is a zero on a boundary, we recommend that the user perturbs
the initial box asymmetrically.

3.1. The structure of ZEAL

The package ZEAL (ZEros of AnaLytic functions) contains about 6 500 lines of code including comments. It is
written in Fortran 90 and has been tested on various UNIX machines.
ZEAL consists of 11 parts, namely, the main progfdiain and the modules

— Precision_Module , in which the user can specify the precision to which the floating point calculations are
to be done,

— Zeal_Module , which contains the main subroutirBEAL and also the subroutinedSHECK INPUTand
ERROR_EXIT

— Zeros_Module , which contains the subroutinaPROXIMATEINdINPROD
— Refine_Module , which contains the subroutinBEFINE andNEWTON
— Split_Module , which contains the subroutind$BOX andSPLITBOX,
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— and finally the moduleError_Module , Quad_Module , Zeal Input_Module , Function_Input_

Module andintegration_Input_Module
ZEAL also requires the subroutine DQAG from the package QUADPACK [8] and a humber of subprograms from
the BLAS and LAPACK libraries [24].

The user can specify the values of the input parameters by editing the matkdednput_Module
Function_Input_Module , Integration_Input_Module . This will be discussed in Section 3.2.

The main progranMain has the following form:

PROGRAM Main

USE Precision_Module
USE Zeal Module

IMPLICIT NONE

INTEGER :: TOTALNUMBER, DISTINCTNUMBER REFINEDNUMBER
INTEGER, DIMENSION(:), POINTER :» MULTIPLICITIES

LOGICAL, DIMENSION(:), POINTER :» REFINEMENT_OK
COMPLEX(KIND=DP), DIMENSION(:), POINTER :: ZEROS, FZEROS

CALL ZEAL(TOTALNUMBER,DISTINCTNUMBER,ZEROS,FZEROS, &
MULTIPLICITIES,REFINEDNUMBER,REFINEMENT_OK)

END PROGRAM Main

The subroutin EAL returns the total number of zeros of the given function that lie inside the given rectangular
region, the number of mutually distinct zeros, the refined approximations for the zeros and the values that the
function takes at these points, the corresponding multiplicities, the number of approximations for the zeros (as
computed by the subroutinfPPROXIMATIEthat ZEAL has been able to refine successfully via the modified
Newton’s method, and finally for each computed zero a logical variable that indicates whether this refinement
procedure has been successful or not.

In the design of ZEAL we have followed the recommendations for precision level maintenance described by
Buckley [25]. The parametd&Pthat appears in the declaration of the varialdEROSandFZEROSs defined in
Precision_Module

INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(15,70)

It determines the precision to which all the floating point calculations are to be done. Its current value corresponds
to Fortran 77’DOUBLE PRECISION.

Let us briefly describe the various parts of ZEAL.

The subroutinédNBOX calculates the total number of zeros that lie inside the rectangular box given by the user.
If some of the zeros lie too close to the boundary of this box and the quadrature routine DQAG failblBlax
perturbs the box slightly and enlarges it.

7 This observation is important for the following reason. As documented imatefile , ZEAL uses certain Fortran 77 routines from
QUADPACK, BLAS and LAPACK. To enable the user to compile the necessary routines from BLAS and LAPACK in case these libraries are
not available on his/her computer system, we have included them with our distribution of ZEAL. However, we have included@ly Bhé
PRECISION version of these routines and hence they should be replaced by the correspBHdBIGE PRECISION routines in case a
change tdPrequires this. The same holds for the subroutine DQAG from QUADPACK.
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The subroutin&SPLITBOX takes a box and splits it into two boxes. A symmetric splitting, which proceeds by
halving the longest edges, is tried first. If the calculation of the integral along the inner edge fails, then it is assumed
that some of the zeros lie too close to this edge and the inner edge is shifted.

The subroutineAPPROXIMATEcontains our implementation of the algorithm of Kravanja et al. [7]. The
symmetric bilinear form (3) is evaluated via the subroutEROD

The subroutineNEWTONontains our implementation of the modified Newton’s method. The subroutine
REFINE callsNEWTOR refine the approximations for the zeros tARPROXIMATHas computed. INREWTON
fails, thenREFINE tries again from a nearby point. If after eight attempSWTONNtill fails, then REFINE
indicates that it has been unable to refine the given approximation successfully.

The subroutin@EAL forms the main part of the packagéEAL starts by callingCHECK_INPUTto check if
the input parameters specified by the user are proper. Next itIBHBI®X. If there are no zeros inside the user’s
box, then the program stops. If there are less tiameros inside the box (where the valueMfcan be specified
in Zeal_Input_Module ), thenAPPROXIMATENdREFINE are called. Else, the box is given$®LITBOX.

The two boxes returned BPLITBOX are examined. A box that does not contain any zero is abandoned. A box
that contains less thal zeros is given tAPPROXIMATENAREFINE. A box that contains more thavl zeros

is putin a list. TherZEAL takes a next box from this list and ca$&LITBOX. This procedure is repeated until all
the zeros have been computed, together with their respective multiplicities.

The program execution terminates normally after the completion of its task. This type of termination is indicated
by the valuel of the variabldNFO, which is a global variable declared in the modileor_Module . If the
value of this parameter is different frol then the termination of the program is abnormal. The cases of abnormal
termination are the following:

INFO=0 Improper input parameters.

INFO=2 The procedure for the calculation of the total number of zeros has failed.
INFO=3 The procedure for the isolation of the zeros has failed.

INFO=4 The procedure for the computation of the zeros has failed.

3.2. ZEAL's user interface

The user can specify the input parameters by editing three different files. (This splitting was done to speed up
the recompilation in case only a few parameters are changed.)
In the moduleZeal_Input_Module  the following parameters have to be set:

LV a real array of length 2 that contains theandy-coordinates of the left lower vertex of the rectangle
that is to be examined.

H a real array of length 2 that specifies the size of this rectangle along tred y-direction.

M an integer that determines the maximum number of zeros (counting multiplicities) that are considered

within a subrectangleM has to be larger than the maximum of the multiplicities of the zeros.
A recommended value is 5.

ICON an integer in{1, ..., 4} that specifies which calculations are to be done:
1 calculation of the total number of zeros, only,
2 calculation of the total number of zeros and isolation of a set of subrectangles, each of which
contains at modtizeros,
3 calculation of the total number of zeros and computation of all the zeros, together with their
respective multiplicities,
4 calculation of the total number of zeros and computatiolNBfzeros, together with their

respective multiplicities.
Note that ifICON=4 the user must also supply the desired number of zBRRdn the other cases
(ICON=1,2,3 ) avalue ofNRmay be supplied but it will not be used by the package.
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VERBOSE a logical variable. ZEAL is allowed to print information (concerning the user’s input and the computed
results) if and only iiVERBOSEHs equal to TRUE.

FILES a logical variable. IfFILES is set equal taTRUE. then ZEAL generates the filezeros.dat
andmult.dat . They contain the computed approximations for the zeros as well as their respective
multiplicities. ZEAL also writes the filézeros.dat , which contains the values that the function
takes at the computed approximations for the zeros.

IFAIL an integer that determines how errors are to be handled. We follow the NAG convention:

1 soft silent error— control is returned to the calling program.
-1 soft noisy error- an error message is printed and control is returned to the calling program.
0 hard noisy error— an error message is printed and the program is stopped.

These parameters determine the geometry of the rectangular region that is to be considered and the type of
calculation that ZEAL will perform.

In the moduldntegration_Input_Module the following parameters have to be set:

NUMABS a real variable that determines the absolute accuracy to which the integrals that calculate the number
of zeros are to be evaluatedNIUMABS = 0.0_DRthen only a relative criterion will be used.

NUMREL areal variable that determines the relative accuracy to which the integrals that calculate the number of
zeros are to be evaluated NUMREL = 0.0_DR then only an absolute criterion will be used.

If NUMAB&NndNUMREIlare both too small, then the numerical integration may be time-consuming.

If they are both too large, then the calculated number of zeros may be wrong. The default values
of NUMABSand NUMRELare 0.07_DP and0.0_DP, respectively. These variables are used by
QUADPACK.

INTABS a real variable that determines the absolute accuracy to which the integrals that are used to compute
approximations for the zeros are to be calculatedNIFABS = 0.0_DP, then only a relative
criterion will be used.

INTREL a real variable that determines the relative accuracy to which the integrals that are used to compute
approximations for the zeros are to be calculatedNIFREL = 0.0_DP , then only an absolute
criterion will be used.

If INTABS andINTREL are both too small, then the numerical integration may be time-consuming.

If they are both too large, then the approximations for the zeros may be very inaccurate and Newton'’s
method, which is used to refine these approximations Kd8&/TONZNdNEWTONEFmay fail. The
default values oNTABS andINTREL are0.0_DP andl1.0E-12_DP ,respectively. These variables

are used by QUADPACK.

EPS_STORa real variable that is used in the stopping criterion that determines the valuetttd number of
mutually distinct zeros. IEPS_STOHSs too large, then the computed valuenofnay be smaller than
the actual number of distinct zeros BPS_STOHs too small, then the computed valuerofmay be
larger than the actual number of distinct zeros, especially in case the function has many multiple zeros.
A recommended value (0E-08_DP .

These parameters are related to numerical integration.

Finally, in the module~unction_Input_Module the user has to specify two parameters that are used in
the stopping criteria for Newton’s method, the functibrwhose zeros ZEAL has to compute as well as its first
derivative. He or she also has to give some information about the analyticitynside the considered region.

The parameters used to control the Newton’s process are the following:

NEWTONZandNEWTONEre real variables which should be specified in d&8N = 3 or 4. They are used
as follows. The modified Newton’s method, which takes into account the multiplicity of a zero and
converges quadratically, is used to refine the calculated approximations for the zeros. The iteration
stops if the relative distance between two successive approximations is aNBWYSTONDr the
absolute value of the function at the last approximation is at MBS TONBr if a maximum number
of iterations (say, 20) is exceeded.
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The considered functioyi and its first derivativef’ should be defined via the subroutiBBF, which takes the
following form:

SUBROUTINE FDF(Z,F,DF)

COMPLEX(KIND=DP), INTENT(IN) = Z
COMPLEX(KIND=DP), INTENT(OUT) : F, DF

F
DF = ..

END SUBROUTINE FDF

If any cases wherg is not analytic are known, they have to be specified using the logical fungddiREG
Given a rectangular region specified by its left lower vertex and the sizes of its &dgjeRFGdecides whether

the functionf is analytic inside this region or not. ZEAL uses this information to decide whether it is allowed to
move the edge of a box or n&fALREGhas the following form:

FUNCTION VALREG(LV,H)

LOGICAL VALREG
REAL(KIND=DP), INTENT(IN) :: LV(2), H(2)

VALREG = ..

END FUNCTION VALREG

For example, iff is analytic in the entire complex plane, then one may use the statement
VALREG = .TRUE.

If f has a branch cut along the non-positive real axis, then one may write

VALREG = .NOT. (LV(2*LV(2)+H(2)) <= 0.0 DP .AND. &
LV(1) <= 0.0_DP)

This concludes our discussion of the structure of ZEAL and its user interface.

4. A few examples of how to use ZEAL

We will now discuss a few numerical examples.
Suppose thaf (z) = ¢ + 2z cosz — 1 and that

W={zeC: —2<Rez<2, —2<Imz<3}

In other wordsW is the rectangular regioj+-2, 2] x [—2, 3]. Therefore, we have to define the input parameters
LV andHas

LV = (/-2.0_DP,-2.0_DP/) and H = (/ 4.0_DP, 5.0_DP/)

We setM = 5 The logical variabl&/ERBOSEs set to. TRUE. We start by calculating only the total number of
zeros|CON = 1. ZEAL outputs the following.
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TEST RUN OUTPUT #1

This is ZEAL. Version of June 1999.

Input:

LV = -2.00000000000000 -2.00000000000000
H = 4.00000000000000 5.00000000000000
M = 5

ICON = 1

FILES = T
Results:

The following box has been considered:

LV = -2.00000016391277 -2.00000019371510
H = 4.00000035762787 5.00000041723251
Total number of zeros inside this box = 4

The function has four zeros inside the given box. We now ask ZEAL to compute approximations for all these zeros,
ICON=3.

TEST RUN OUTPUT #2

This is ZEAL. Version of June 1999.

Input:

LV = -2.00000000000000 -2.00000000000000
H = 4.,00000000000000 5.00000000000000
M = 5

ICON = 3

FILES = T
Results:

The following box has been considered:

LV = -2.00000016391277 -2.00000019371510
H = 4.00000035762787 5.00000041723251
Total number of zeros inside this box = 4

Number of boxes containing at most 5 zeros = 1
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These boxes are given by:

1) LV = -2.00000016391277 -2.00000019371510
H = 4.00000035762787 5.00000041723251
Total number of zeros inside this box = 4

Final approximations for the zeros and verification:

1) Number of mutually distinct zeros inside this box = 4
z = (-1.84423395326221 ,-0.729696337329436E-29 )
f(z) = ( 0.222044604925031E-15, 0.297690930716218E-28 )
multiplicity = 1
z = ( 0.530894930292930 , 1.33179187675112 )
f(z) = ( 0.888178419700125E-15, 0.222044604925031E-14 )
multiplicity = 1
z = ( 0.530894930292930 ,-1.33179187675112 )
f(z) = (-0.266453525910038E-14,-0.444089209850063E-15 )
multiplicity = 1
z = ( 0.277555756299546E-16, 0.732694008769276E-26 )
f(z) = ( 0.00000000000000 , 0.366347004384638E-25 )
multiplicity = 1

If we setM = 2 then ZEAL outputs the following.

TEST RUN OUTPUT #3

This is ZEAL. Version of June 1999.
Input:

LV
H

-2.00000000000000 -2.00000000000000
4.00000000000000 5.00000000000000

M
ICON

2
3

FILES T

Results:
The following box has been considered:

LV = -2.00000016391277 -2.00000019371510
H = 4.00000035762787 5.00000041723251
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Total number of zeros inside this box = 4
Number of boxes containing at most 2 zeros = 3

These boxes are given by:

1) LV = -2.00000016391277 0.500000014901161
H = 4.00000035762787 2.50000020861626
Total number of zeros inside this box = 1

2) LV = -2.00000016391277 -2.00000019371510
H = 2.00000017881393 2.50000020861626
Total number of zeros inside this box = 2

3) LV = 0.149011611938477E-07 -2.00000019371510
H = 2.00000017881393 2.50000020861626
Total number of zeros inside this box = 1

Final approximations for the zeros and verification:

1) Number of mutually distinct zeros inside this box = 1
z = ( 0.530894930292931 , 1.33179187675112 )
f(z) = ( 0.888178419700125E-15,-0.177635683940025E-14 )
multiplicity = 1

2) Number of mutually distinct zeros inside this box = 2
z = (-1.84423395326221 ,-0.5651251254781237E-21 )
f(z) = ( 0.222044604925031E-15, 0.224891493487409E-20 )
multiplicity = 1
z = (-0.501336236251204E-20,-0.135361644895767E-20 )
f(z) = ( 0.00000000000000 ,-0.676808224478837E-20 )
multiplicity = 1

3) Number of mutually distinct zeros inside this box = 1
z = ( 0.530894930292931 ,-1.33179187675112 )
f(z) = ( 0.888178419700125E-15,-0.444089209850063E-15 )
multiplicity = 1

Finally, suppose that we want ZEAL to compute only two zeros. We&BN=4 andNR=2

TEST RUN OUTPUT #4

This is ZEAL. Version of June 1999.

227



228 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212-232

Input:

LV = -2.00000000000000 -2.00000000000000
H = 4.,00000000000000 5.00000000000000
M = 2

NR = 2

ICON = 4

FILES = T

Results:

The following box has been considered:

LV = -2.00000016391277 -2.00000019371510

H = 4.00000035762787 5.00000041723251
Total number of zeros inside this box = 4
Number of boxes containing at most 2 zeros = 3

These boxes are given by:

1) LV = -2.00000016391277 0.500000014901161
H = 4.00000035762787 2.50000020861626
Total number of zeros inside this box = 1

2) LV = -2.00000016391277 -2.00000019371510
H = 2.00000017881393 2.50000020861626
Total number of zeros inside this box = 2

3) LV = 0.149011611938477E-07 -2.00000019371510
H = 2.00000017881393 2.50000020861626
Total number of zeros inside this box = 1

Requested number of mutually distinct zeros = 2

Final approximations for the zeros and verification:

1) Number of mutually distinct zeros inside this box = 1

z = ( 0.530894930292931 , 1.33179187675112 )

f(z) = ( 0.888178419700125E-15,-0.177635683940025E-14 )
multiplicity = 1
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2) Number of mutually distinct zeros inside this box = 2

z = (-1.84423395326221 , -0.551251254781237E-21 )
f(z) = ( 0.222044604925031E-15, 0.224891493487409E-20 )
multiplicity = 1

Suppose thaf (z) = z%(z — 1)(z — 2)(z — 3)(z — 4) + zsinz and letW be the rectangular region determined by
LV = (/-0.5_DP,-0.5 DP/) and H = (/ 6.0 DP, 2.0 _DP/)
Note thatf has a double zero at the origin. We b&t5andICON=3.

TEST RUN OUTPUT #5

This is ZEAL. Version of June 1999.

Input:

LV = -0.500000000000000 -0.500000000000000
H = 6.00000000000000 2.00000000000000
M = 5

ICON = 3

FILES = T

Results:

The following box has been considered:

LV = -0.500000163912773 -0.500000193715096
H = 6.00000035762787 2.00000041723251

Total number of zeros inside this box = 6
Number of boxes containing at most 5 zeros = 2

These boxes are given by:

1) LV = -0.500000163912773 -0.500000193715096
H = 3.00000017881393 2.00000041723251
Total number of zeros inside this box = 4

2) LV = 2.50000001490116 -0.500000193715096
H = 3.00000017881393 2.00000041723251

Total number of zeros inside this box = 2
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Final approximations for the zeros and verification:

1)

2)

Number of mutually distinct zeros inside this box = 3

z = ( -0.555111512312578E-15, 0.774442308175991E-15 )
f(z) = ( -0.729030243977503E-29,-0.214950920445209E-28 )
multiplicity = 2

z = ( 1.18906588973011 , 0.372342347264318E-27 )
f(z) = ( 0.00000000000000 ,-0.147405864729133E-26 )
multiplicity = 1

z = ( 1.72843498616506 , 0.189326617253043E-27 )
f(z) = ( 0.666133814775094E-15, 0.904485799870076E-27 )
multiplicity = 1

Number of mutually distinct zeros inside this box = 2

z = ( 3.01990732809571 , 0.481205152184817E-28 )
f(z) = ( -0.105471187339390E-14,-0.104420423665203E-26 )
multiplicity = 1

z = ( 4.03038191606047 , 0.394430452610506E-28 )
f(z) = ( 0.150990331349021E-13, 0.421365501391524E-26 )
multiplicity = 1

Finally, suppose thaf (z) = z2(z — 2)?[e% cosz + z2 — 1 — sinz] and letW be the region determined by

LV = (/-1.0_DP,-1.0_DP/) and H = (/ 4.0 DP, 2.0_DP/)

Note thatf has a triple zero at the origin and a double zerp-at2. We setM=5andICON=3.

TEST RUN OUTPUT #6

This is ZEAL. Version of June 1999.

Input:

= -1.00000000000000 -1.00000000000000
= 4.00000000000000 2.00000000000000

Results:

The following box has been considered:
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LV = -1.00000016391277 -1.00000019371510
H = 4.00000035762787 2.00000041723251
Total number of zeros inside this box = 8
Number of boxes containing at most 5 zeros = 2

These boxes are given by:

1) LV = -1.00000016391277 -1.00000019371510
H = 2.00000017881393 2.00000041723251
Total number of zeros inside this box = 5

2) LV = 1.00000001490116 -1.00000019371510
H = 2.00000017881393 2.00000041723251
Total number of zeros inside this box = 3

Final approximations for the zeros and verification:

1) Number of mutually distinct zeros inside this box = 3
z = (-0.460714119728972 ,-0.625427769347768 )
f(z) = ( 0.139986423568309E-14, 0.948597781037581E-14 )
multiplicity = 1
z = (-0.749400541621981E-15, 0.243022572576853E-15 )
f(z) = (-0.120813528135193E-44, 0.162080855465761E-44 )
multiplicity = 3
z = (-0.460714119728972 , 0.625427769347768 )
f(z) = (-0.383075548142431E-15,-0.579735693200359E-14 )
multiplicity = 1

2) Number of mutually distinct zeros inside this box = 2
z = (. 2.00000000000000 , 0.114762494171498E-14 )
f(z) = (-0.122427664771369E-26,-0.678041409962963E-27 )
multiplicity = 2
z = ( 1.66468286974552 , -0.863802691217008E-28 )
f(z) = ( 0.276741773088933E-15, 0.662785838981764E-27 )
multiplicity = 1

5. Concluding remarks

We have applied ZEAL to various analytic functions and rectangular regions and have found that it behaves
predictably and accurately. ZEAL calculates the total number of zeros that lie inside the given box and then
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computes approximations for these zeros, together with their respective multiplicities. Our package does not require
initial approximations for the zeros.

The user will appreciate the flexibility offered by the input paramiE@N. If nothing is known about the zeros
that lie inside the given box, one may call ZEAL witBON = 1 to obtain the total number of zeros. Then one
may proceed witHCON = 3 to compute approximations for all these zeros, or, if less than the total number
of zeros are required, wittCON = 4 andNRequal to the requested number of zeros. If only a set of boxes is
required, each of which contains less thMpreros (counting multiplicities), then one may E8ON = 2.
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