
Computer Physics Communications 124 (2000) 212–232
www.elsevier.nl/locate/cpc

ZEAL: A mathematical software package for computing zeros
of analytic functions

P. Kravanjaa,1, M. Van Barela,2, O. Ragosb,3, M.N. Vrahatisb,4, F.A. Zafiropoulosb,5
a Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200 A, B-3001 Heverlee, Belgium

b Department of Mathematics and University of Patras Artificial Intelligence Research Center (UPAIRC), University of Patras,
GR-261.10 Patras, Greece

Received 3 December 1998; accepted 28 June 1999

Abstract

We present a reliable and portable software package for computing zeros of analytic functions. The package is named ZEAL
(ZEros of AnaLytic functions). Given a rectangular regionW in the complex plane and a functionf :W → C that is analytic
inW and does not have zeros on the boundary ofW , ZEAL localizes and computesall the zeros off that lie insideW , together
with their respective multiplicities. ZEAL is based on the theory of formal orthogonal polynomials. It proceeds by evaluating
numerically certain integrals along the boundary ofW involving the logarithmic derivativef ′/f and by solving generalized
eigenvalue problems. The multiplicities are computed by solving a linear system of equations that has Vandermonde structure.
ZEAL is written in Fortran 90. 2000 Elsevier Science B.V. All rights reserved.

PACS:02.30.Dk; 02.60.Cb
AMS classification: 65H05
Keywords:Analytic functions; Zeros; Multiplicities; Quadrature method; Formal orthogonal polynomials; Isolation of zeros; Computation of
zeros

PROGRAM SUMMARY

Title of program: ZEAL

Catalogue identifier:ADKW

Program Summary URL:
http://cpc.cs.qub.ac.uk/summaries/ADKW

Program obtainable from:CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Computers:Hewlett-Packard 9000 B160L, IBM RS6000 7012, Sun
Microsystems SPARC Ultra-2 m1170 and Silicon Graphics Origin
2000

Operating systems under which the program has been tested:UNIX
(HPUX 11.0, AIX 3.2.5, SunOS 5.5.1 and IRIX64 6.4)

1 E-mail: Peter.Kravanja@na-net.ornl.gov
2 E-mail: Marc.VanBarel@cs.kuleuven.ac.be
3 E-mail: ragos@math.upatras.gr
4 E-mail: vrahatis@math.upatras.gr
5 E-mail: phikapa@math.upatras.gr

0010-4655/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(99)00429-4

P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232 213

Programming language used:Fortran 90

Memory required to execute with typical data:Less than 500 Kbytes

No. of bits in a word:32 bits

No. of processors used:One

Has the code been vectorised?:No

No. of bytes in distributed program, including test data, etc.:
252 832

Distribution format: uuencoded compressed tar file

Keywords: Analytic functions, zeros, multiplicities, quadrature
method, formal orthogonal polynomials, isolation of zeros, compu-
tation of zeros

Nature of physical problem
ZEAL is a general purpose package for computing zeros of ana-
lytic functions. It can be used in various physical applications. More
precisely, given a rectangular regionW in the complex plane and
an analytic functionf :W → C, such that no zero off lies on the
boundary ofW , ZEAL calculates all the zeros off that lie insideW ,
together with their respective multiplicities.

Method of solution
The package ZEAL uses an integral formula to compute the total
number of zeros (counting multiplicities) off that lie insideW .
Then, by using the same procedure, the regionW is subdivided into
subregions that contain at mostM zeros (again counting multiplic-
ities), where the value ofM is specified by the user. Approxima-
tions for these zeros are calculated via an algorithm that is based
on numerical integration along the boundaries of the subregions and
generalized eigenvalue problems. The multiplicities of the zeros are
calculated by solving a Vandermonde system. The approximations
for the zeros are refined via the modified Newton’s method, which
takes into account the multiplicity of a zero and converges quadrat-
ically.

Restrictions on the complexity of the problem
The functionf has to be analytic in the rectangular regionW .
Bothf and its derivativef ′ are needed. The edges ofW have to be
parallel to the coordinate axes. The boundary ofW is not allowed
to contain zeros off . Since, in the sequel,W is repeatedly subdi-
vided, the boundaries of the obtained subregions should not contain
zeros off . The possibility of such a situation can be minimized if
W is not symmetric with respect to the axes. ZEAL is not specifi-
cally designed to handle clusters of zeros. However, iff has one or
more clusters of zeros and the input parameterEPS_STOPis given
a proper (problem-dependent) value, then ZEAL will compute ap-
proximations for the centres of the clusters. The “multiplicity” of a
centre is equal to the total number of zeros that belong to the corre-
sponding cluster.

Typical running time
The following table gives the running times (in seconds) for the test
runs of Section 4:

System library Code included in ZEAL

Test run # 1 0.13 (0.13) 0.18 (0.14)

Test run # 2 1.82 (1.04) 1.65 (1.14)

Test run # 3 1.55 (1.14) 1.60 (1.42)

Test run # 4 1.52 (1.15) 1.62 (1.35)

Test run # 5 0.65 (0.41) 1.62 (0.37)

Test run # 6 1.56 (0.56) 1.54 (0.53)

The calculations have been done on a SUN SPARC Ultra-2
m1170. We have used the subroutine ETIME. The parenthesized
running times correspond to optimized compiling.

ZEAL uses a number of routines from the BLAS and LAPACK
libraries. These Fortran 77 routines are distributed together with
ZEAL to enable the user to compile them in case the BLAS and
LAPACK libraries are not available on his/her computer system.
The column labelled “System library” gives the running times in
case ZEAL uses the BLAS and LAPACK libraries that are installed
on our SUN computer. The column labelled “Code included in
ZEAL” gives the running times in case the Fortran 77 routines dis-
tributed with ZEAL are used.

LONG WRITE-UP

1. Introduction

Let W be a rectangular region inC, f :W → C analytic in the closure ofW andγ the (positively oriented)
boundary ofW . Suppose thatγ does not pass through any zero off and that the edges ofγ are parallel to the
coordinate axes. We present a reliable and portable software package for computingall the zeros off that lie in

214 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232

the interior ofγ , together with their respective multiplicities6. Our package is named ZEAL (ZEros of AnaLytic
functions) and is written in Fortran 90.

Our approach to the problem of computing all the zeros of an analytic function that lie in the interior of a
Jordan curve can be seen as a continuation of the pioneering work of Delves and Lyness [1] and the corresponding
Fortran 77 implementation written by Botten, Craig and McPhedran [2].

Let N denote the total number of zeros off that lie in the interior ofγ , i.e., the number of zeros where each
zero is counted according to its multiplicity. Suppose from now on thatN > 0. Delves and Lyness considered the
sequenceZ1, . . . ,ZN that consists of all the zeros off that lie insideγ . Each zero is repeated according to its
multiplicity. An easy calculation shows that the logarithmic derivativef ′/f has a simple pole at each zero off
with residue equal to the multiplicity of the zero. Cauchy’s Theorem implies that

N = 1

2π i

∫
γ

f ′(z)
f (z)

dz. (1)

This formula enables us to calculateN via numerical integration. Methods for the determination of zeros of analytic
functions that are based on the numerical evaluation of integrals are calledquadrature methods. A review of such
methods is given by Ioakimidis [3]. Delves and Lyness considered the integrals

sp := 1

2π i

∫
γ

zp
f ′(z)
f (z)

dz, p = 0,1,2,

The residue theorem implies that thesp ’s are equal to theNewton sumsof the unknown zeros,

sp =Zp1 + · · · +ZpN, p= 0,1,2, (2)

Thesesp ’s can again be calculated via numerical integration alongγ .
Delves and Lyness considered the monic polynomial of degreeN that has zerosZ1, . . . ,ZN ,

PN(z) :=
N∏
k=1

(z−Zk)=: zN + σ1 z
N−1+ · · · + σN .

They calledPN(z) theassociated polynomialfor the interior ofγ . Its coefficients can be calculated via Newton’s
identities. An elegant proof is given by Carpentier and Dos Santos [4].

Theorem 1 (Newton’s identities).

s1+ σ1= 0,

s2+ s1σ1+ 2σ2= 0,
...

sN + sN−1 σ1+ · · · + s1σN−1+N σN = 0.

In this way they reduced the problem to the easier problem of computing the zeros of a polynomial.
Unfortunately, the map from the Newton sumss1, . . . , sN to the coefficientsσ1, . . . , σN is usually ill-conditioned.
Also, the polynomials that arise in practice may be such that small changes in the coefficients produce much larger

6 The assumptions thatW is a rectangular region in the complex plane and that the edges of its boundaryγ are parallel to the coordinate axes
are of course not essential from a theoretical point of view. They merely represent the specific choice that we have made while developing our
package. In fact, the algorithm for computing all the zeros off that lie in the interior ofγ that we will discuss in Section 2 can be used for an
arbitrary simply connected regionW and an arbitrary positively oriented Jordan curveγ .

P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232 215

changes in some of the zeros. This ill-conditioning of the map between the coefficients of a polynomial and its
zeros has been investigated by Wilkinson [5]. The location of the zeros determines their sensitivity to perturbations
of the coefficients. Multiple zeros and very close zeros are extremely sensitive, but even a group of moderately
close zeros can result in severe ill-conditioning. Wilkinson states that ill-conditioning in polynomials cannot be
overcome without, at some stage of the computation, resorting to high precision arithmetic.

If f has many zeros in the interior ofγ , then the associated polynomial is of high degree and could be very
ill-conditioned. Therefore, ifN is large, one has to calculate the coefficientsσ1, . . . , σN , and thus the integrals
s1, . . . , sN , very accurately. To avoid the use of high precision arithmetic and to reduce the number of integrand
evaluations needed to approximate thesp ’s, Delves and Lyness suggested to construct and solve the associated
polynomial only if its degree is smaller than or equal to a preassigned numberM. Otherwise, the interior ofγ is
subdivided or covered with a finite covering and the smaller regions are treated in turn. The choice ofM involves
a trade-off. IfM is increased, then fewer regions have to be scanned. However, ifM is chosen too large, then the
resulting associated polynomial may be ill-conditioned. Delves and Lyness choseM = 5.

Instead of using Newton’s identities to construct the associated polynomial, Li [6] considered (2) as a system of
polynomial equations. He used a homotopy continuation method to solve this system.

In this contribution we consider the mutually distinct zeros and their respective multiplicitiesseparately. This
is the approach that has recently been taken by Kravanja et al. [7]. Their quadrature method is a generalization of
the method of Delves and Lyness. It is again based on the numerical evaluation of integrals alongγ that involve
the logarithmic derivativef ′/f , but by using the theory of formal orthogonal polynomials they have been able to
obtain more accurate approximations for the zeros. Therefore, one may give the parameterM, i.e., the number
of zeros that are calculated simultaneously, a larger value. Moreover, the algorithm of [7] does not require initial
approximations for the zeros – it is self-starting – and it provides not only accurate approximations for the zeros
but also the values of the corresponding multiplicities. Our Fortran 90 implementation of this algorithm is at the
heart of ZEAL. Numerical approximations for the integrals are computed via the well-known quadrature package
QUADPACK [8].

ZEAL’s user interface is inspired by that of the Fortran 77 package ZEBEC, which is a package for computing
simple zeros of Bessel functions that has been recently written by Kravanja et al. [9]. Once the user has specified
the rectangular regionW , the analytic functionf and its derivativef ′, and the value of the parameterM, he/she
can ask ZEAL to compute only the total number of zeros off that lie insideW , to isolate subregions ofW that
contain at mostM zeros, to compute all the zeros off that lie insideW or to compute only a specified number of
zeros (together with their respective multiplicities). The results can be written on separate files. All these options
will be discussed in detail below.

This paper is organized as follows. In Section 2 we give an overview of the algorithm for computing zeros of
analytic functions that has been proposed by Kravanja et al. [7]. In Section 3 we discuss the structure and the user
interface of our package ZEAL. Numerical examples are presented in Section 4.

2. Computing zeros of analytic functions

Let n denote the number of mutually distinct zeros off that lie insideγ . Let z1, . . . , zn be these zeros and
ν1, . . . , νn their respective multiplicities. The quadrature method that Kravanja et al. [7] have recently proposed
generalizes the approach of Delves and Lyness. Our implementation of their algorithm forms the central part of
ZEAL. By using the theory of formal orthogonal polynomials, they have shown how the mutually distinct zeros
can be calculated by solving generalized eigenvalue problems. The value ofn is determined indirectly. Oncen and
z1, . . . , zn have been found, the problem becomes linear and the multiplicitiesν1, . . . , νn are computed by solving
a linear system of equations that has Vandermonde structure. In this section we will give a brief summary of these
results. For more details (including proofs and a pseudo-code formulation of the algorithm), we refer to [7].

216 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232

LetP be the linear space of polynomials with complex coefficients. One defines a symmetric bilinear form

〈·, ·〉 :P ×P→C

by setting

〈φ,ψ〉 := 1

2π i

∫
γ

φ(z)ψ(z)
f ′(z)
f (z)

dz=
n∑
k=1

νkφ(zk)ψ(zk) (3)

for any two polynomialsφ,ψ ∈P . The latter equality follows from the fact thatf ′/f has a simple pole atzk with
residueνk for k = 1, . . . , n. Note that〈·, ·〉 can be evaluated via numerical integration alongγ . In what follows,
we will assume that all the “inner products”〈φ,ψ〉 that are needed have been calculated. Letsp := 〈1, zp〉 for
p = 0,1,2, These ordinary moments are equal to theNewton sumsof the unknown zeros,

sp =
n∑
k=1

νkz
p

k , p = 0,1,2,

In particular,s0 = ν1 + · · · + νn = N , the total number of zeros. Hence, we may assume that the value ofN is
known. LetHk be thek× k Hankel matrix

Hk :=
[
sp+q

]k−1
p,q=0=


s0 s1 · · · sk−1

s1 ..
. ...

... . .
. ...

sk−1 · · · · · · s2k−2


for k = 1,2, A monic polynomialϕt of degreet > 0 that satisfies〈

zk,ϕt (z)
〉= 0, k = 0,1, . . . , t − 1, (4)

is called aformal orthogonal polynomial(FOP) of degreet . (Observe that condition (4) is void fort = 0.) The
adjectiveformal emphasizes the fact that, in general, the form〈·, ·〉 does not define a true inner product. An
important consequence of this fact is that, in contrast to polynomials that are orthogonal with respect to a true
inner product, formal orthogonal polynomials need not exist or need not be unique for every degree. (For details,
see Draux [10,11], Gutknecht [12,13] or Gragg and Gutknecht [14].) If (4) is satisfied andϕt is unique, thenϕt is
called aregularFOP andt a regular index. If we set

ϕt(z)=: u0,t + u1,t z+ · · · + ut−1,t z
t−1+ zt ,

then condition (4) translates into theYule–Walkersystem
s0 s1 · · · st−1

s1 ..
. ...

... . .
. ...

st−1 · · · · · · s2t−2




u0,t

u1,t

...

ut−1,t

=−


st

st+1

...

s2t−1

 . (5)

Hence, the regular FOP of degreet > 1 exists if and only if the matrixHt is nonsingular.
The following theorem characterizesn, the number of mutually distinct zeros. It enables one, theoretically at

least, to calculaten as rankHN .

P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232 217

Theorem 2. n= rankHn+p for every nonnegative integerp. In particular,n= rankHN .

Therefore,Hn is nonsingular whereasHt is singular fort > n. Note thatH1= [s0] is nonsingular by assumption.
The regular FOP of degree 1 exists and is given byϕ1(z)= z−µ where

µ := s1
s0
=
∑n
k=1 νkzk∑n
k=1 νk

is the arithmetic mean of the zeros. Theorem 2 implies that the regular FOPϕn of degreen exists and tells us also
that regular FOPs of degree larger thann do not exist. The polynomialϕn is easily seen to be

ϕn(z)= (z− z1) · · · · · (z− zn). (6)

It is the monic polynomial of degreen that hasz1, . . . , zn as simple zeros. This polynomial has the peculiar property
that it is orthogonal toall polynomials (including itself),〈

zk,ϕn(z)
〉= 0, k = 0,1,2,

Oncen is known, the mutually distinct zerosz1, . . . , zn can be calculated by solving a generalized eigenvalue
problem. Indeed, letH<

n be the Hankel matrix

H<
n :=


s1 s2 · · · sn

s2 ..
. ...

... . .
. ...

sn · · · · · · s2n−1

 .

Theorem 3. The eigenvalues of the pencilH<
n − λHn are given byz1, . . . , zn.

Oncez1, . . . , zn have been found, the multiplicitiesν1, . . . , νn can be computed by solving the Vandermonde
system

1 · · · 1

z1 · · · zn
...

...

zn−1
1 · · · zn−1

n




ν1

ν2

...

νn

=


s0

s1
...

sn−1

 . (7)

Note. Vandermonde matrices are often very ill-conditioned [15,16]. In our case, however, the components of the
solution vector of (7) are known to be integers, and therefore there is no problem, even if the linear system (7)
happens to be ill-conditioned, as long as the computed approximations for the components of the solution vector
have an absolute error that is less than 0.5.

Theorems 2 and 3 suggest the following approach to computen andz1, . . . , zn. Start by computing the total
number of zerosN . Next, computes1, . . . , s2N−2. As already mentioned, this can be done via numerical integration
alongγ . The number of mutually distinct zeros is then calculated as the rank ofHN , n = rankHN . Finally, the
zerosz1, . . . , zn are obtained by solving a generalized eigenvalue problem. However, this approach has several
disadvantages:
– Theoretically theN−n smallest singular values ofHN are equal to zero. In practice, this will not be the case, and

it may be difficult to determine the rank ofHN and hence the value ofn in case the gap between the computed
approximations for the zero singular values and the nonzero singular values is too small.

218 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232

– The approximations forz1, . . . , zn obtained via Theorem 3 may not be very accurate. Indeed, the mapping from
the Newton sums to the zeros and their respective multiplicities,

(s0, s1, . . . , s2n−1) 7→ (z1, . . . , zn, ν1, . . . , νn), (8)

is usually very ill-conditioned. (See, e.g., the papers by Gautschi [17–19] who studied the conditioning of (8) in
the context of Gauss quadrature formulae.) A classical adage in numerical analysis says that one should avoid
the use of ordinary moments.

In [7] Kravanja et al. have proposed an algorithm that gives more accurate approximations forz1, . . . , zn. The idea
is the following. The inner products that appear in the Hankel matricesHn andH<

n are related to the standard
monomial basis. Why not consider a different basis? In other words, why not try to use modified moments instead
of ordinary moments? The fact that

Hn =
[〈zp, zq〉]n−1

p,q=0 and H<
n =

[〈zp, zzq〉]n−1
p,q=0

suggests that one should consider the matrices[〈ψp,ψq〉]n−1
p,q=0 and

[〈ψp,ψ1ψq 〉
]n−1
p,q=0, (9)

whereψk is a polynomial of degreek for k = 0,1, . . . , n−1. Of course, even if one succeeds in writing Theorem 3
in terms of the matrices that appear in (9), the question remains which polynomialsψk to choose. Kravanja
et al. [7] have found that very accurate results are obtained if one uses the formal orthogonal polynomials. In
other words, the zeros ofϕn(z) will be computed from inner products that involveϕ0(z), ϕ1(z), . . . , ϕn−1(z). The
value ofn will be determined indirectly. Before we can explain this in more detail, we have to say a few words
about the orthogonality properties of FOPs.

If Hn is strongly nonsingular, i.e., if all its leading principal submatrices are nonsingular, then we have a full set
{ϕ0, ϕ1, . . . , ϕn} of regular FOPs.

What happens ifHn is not strongly nonsingular? By filling up the gaps in the sequence of existing regular FOPs it
is possible to define a sequence{ϕt }∞t=0, with ϕt a monic polynomial of degreet , such that if these polynomials are
grouped into blocks according to the sequence of regular indices, then polynomials belonging to different blocks
are orthogonal with respect to〈·, ·〉. More precisely, define{ϕt}∞t=0 as follows. Ift is a regular index, then letϕt be
the regular FOP of degreet . Else defineϕt asϕrψt,r wherer is the largest regular index less thant andψt,r is an
arbitrary monic polynomial of degreet − r. In the latter caseϕt is called aninner polynomial. These polynomials
{ϕt }∞t=0 can be grouped into blocks. Each block starts with a regular FOP and the remaining polynomials are inner
polynomials. Note that the last block has infinite length. The block orthogonality property is then expressed by the
fact that theGram matrixGn := [〈ϕr,ϕs〉]n−1

r,s=0 is block diagonal. The diagonal blocks are nonsingular, symmetric
and zero above the main antidiagonal. (See Bultheel and Van Barel [20] for more details.)

Theorem 3 can be interpreted in the following way: the zeros of the regular FOP of degreen can be calculated by
solving a generalized eigenvalue problem. The following theorem shows that this zero/eigenvalue property holds
for all regular FOPs. This will enable us to compute regular FOPs in their product representation. The theorem
also provides a solution to the problem of how to switch from ordinary moments to modified moments. Define the
matricesGk andG(1)k as

Gk :=
[〈ϕr,ϕs〉]k−1

r,s=0 and G
(1)
k :=

[〈ϕr,ϕ1ϕs〉
]k−1
r,s=0

for k = 1,2,

Theorem 4. Let t > 1 be a regular index and letzt,1, . . . , zt,t be the zeros of the regular FOPϕt . Then the
eigenvalues of the pencilG(1)t − λGt are given byϕ1(zt,1), . . . , ϕ1(zt,t). In other words, they are given by
zt,1−µ, . . . , zt,t −µ whereµ= s1/s0.

P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232 219

Corollary 1. The eigenvalues ofG(1)n − λGn are given byz1−µ, . . . , zn −µ whereµ= s1/s0.

Regular FOPs are characterized by the fact that the determinant of a Hankel matrix is different from zero, while
inner polynomials correspond to singular Hankel matrices. To decide whetherϕt(z) should be defined as a regular
FOP or as an inner polynomial, one could calculate the determinant ofHt and check if it is equal to zero. However,
from a numerical point of view such a test “is equal to zero” does not make sense. Because of rounding errors
(both in the evaluation of〈·, ·〉 and in the calculation of the determinant) one would encounter only regular FOPs.
Strictly speaking one could say that inner polynomials are not needed in numerical calculations. However, the
opposite is true! Let us agree to call a regular FOPwell-conditionedif its corresponding Yule–Walker system (5) is
well-conditioned, andill-conditionedotherwise. To obtain a numerically stable algorithm, it is crucial to generate
only well-conditioned regular FOPs and to replace ill-conditioned regular FOPs by inner polynomials. Stable look-
ahead solvers for linear systems of equations that have Hankel structure are based on this principle [21–23]. In
this approach the diagonal blocks inGn are taken (slightly) larger than strictly necessary to avoid ill-conditioned
blocks.

The algorithm for calculatingz1, . . . , zn that Kravanja et al. [7] have proposed proceeds by computing the
polynomialsϕ0(z), ϕ1(z), . . . , ϕn(z) in their product representation, starting withϕ0(z)← 1 andϕ1(z)← z− µ.
At each step, to decide whether it is numerically feasible to generate the next polynomial in the sequence as a
regular FOP, the algorithm uses a heuristic method. By doing a large number of numerical experiments, Kravanja
et al. have reached the conclusion that their heuristic approach leads to accurate results. For more details, we refer
to [7].

How does one obtain the value ofn? Theorem 2 and Eqs. (3) and (6) imply the following.

Theorem 5. Let t > n. Thenϕt(zk)= 0 for k = 1, . . . , n and〈zp,ϕt (z)〉 = 0 for all p > 0.

The value ofn can be determined as follows. Suppose that the algorithm has just generated a (well-conditioned)
regular FOPϕr(z). To check whethern= r, the algorithm scans the sequence(∣∣〈(z−µ)τϕr(z), ϕr(z)〉∣∣)N−1−r

τ=0 .

If all the elements are “sufficiently small”, then the algorithm concludes that indeedn= r and it stops. As we will
explain in Section 3, the value ofEPS_STOP, one of the input parameters of ZEAL, is used in this test.

As we have already mentioned, oncen and (approximations for)z1, . . . , zn have been found, the multiplicities
ν1, . . . , νn are computed by solving the Vandermonde system (7).

This concludes our discussion of the algorithm of Kravanja et al. More details can be found in [7].

3. The package ZEAL

Given a rectangle whose edges are parallel to the coordinate axes and a positive integerM, we take the following
approach.
– We calculate the total number of zeros that lie inside this rectangle.
– Via consecutive subdivisions we obtain a set of subrectangles, each of which contains at mostM zeros (counting

multiplicities).
– For each of these subrectangles, we calculate approximations for the zeros that lie inside it, together with their

respective multiplicities.
– The approximations for the zeros are refined iteratively via the modified Newton’s method.
As the functionf may have zeros on the boundary of the rectangular box specified by the user, ZEAL starts by
perturbing this box. For this purpose a tolerance is used that is taken to be proportional to a power of the machine
precision, for example, 10 times the square root of the machine precision. The box is then slightly enlarged in an

220 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232

asymmetrical way. The reason for this asymmetric perturbation is to eliminate the possibility of having a zero close
to or on any boundary of the consecutive subdivisions.

The total number of zeros off that lie inside the perturbed box is obtained in the same way as in the package
ZEBEC [9]. The real part of the integral in (1) is written as a sum of four integrals, where each integral corresponds
to one of the edges of the rectangular region. Approximations for these integrals are calculated via the adaptive
integrator DQAG from the package QUADPACK [8]. A zero near one of the edges of the rectangle causes the
integrand of the corresponding integral to have a “peak”. The closer the zero lies to the edge, the sharper this peak
is. If the zero lies on the edge, then the integral is divergent. DQAG uses adaptive strategies that enable it to cope
with such peaks efficiently. However, if a zero lies too close to an edge (the corresponding peak is too sharp), then
DQAG warns us that it has problems in calculating the integral. Our algorithm then slightly moves this edge and
restarts. By enlarging the user’s box, we may of course include additional zeros. We have decided not to discard
any of these zeros ourselves. Rather, we provide the user with the box that eventually has been considered, all the
zeros that lie inside this box, and leave it to him/her to filter out unwanted zeros.

If the starting box (as perturbed by ZEAL) contains less thanM zeros (counting multiplicities), then
approximations for these zeros and the values of their respective multiplicities are computed via our implementation
of the algorithm of Kravanja et al. [7]. Otherwise, the longest edges of the box are halved and the box is subdivided
into two equal boxes. The number of zeros in each of these boxes is calculated via numerical integration. If DQAG
detects a zero near the inner edge, then this edge is shifted, a process that results in an asymmetric subdivision
of the box. Then the two smaller boxes are examined. A box that does not contain any zero is abandoned. If a
box contains less thanM zeros, then approximations for these zeros are calculated, together with their respective
multiplicities. A box that contains more thanM zeros is subdivided again. This process is repeated until a set of
boxes has been found, each of which contains at mostM zeros, and approximations for all these zeros as well as
the values of their respective multiplicities have been computed. The approximations for the zeros are then refined
via the modified Newton’s method, which takes into account the multiplicity of a zero and converges quadratically.

As we have already mentioned, if the functionf has a zero on the boundary of the initial rectangular regionW

or on the boundary of one of the subregions ofW that the algorithm uses to isolate groups of zeros, then this may
cause numerical integration problems. In some cases the small perturbations that ZEAL applies to the edges of the
rectangular boxes do not solve these problems. QUADPACK uses certain heuristic strategies. They work very well
but nevertheless can fail. For example, we have observed that in case the function has several zeros very close (at
a distance less than 10−7) to the boundary, then DQAG may give a incorrect total number of zeros without giving
any warning message. We advise the user to consider an initial region that is not symmetric with respect to the axes.
In this way the possibility of having an imaginary or a real zero on the boundary of a subregion is minimized. If, in
spite of this, during consecutive subdivisions there is a zero on a boundary, we recommend that the user perturbs
the initial box asymmetrically.

3.1. The structure of ZEAL

The package ZEAL (ZEros of AnaLytic functions) contains about 6 500 lines of code including comments. It is
written in Fortran 90 and has been tested on various UNIX machines.

ZEAL consists of 11 parts, namely, the main programMain and the modules
– Precision_Module , in which the user can specify the precision to which the floating point calculations are

to be done,
– Zeal_Module , which contains the main subroutineZEAL and also the subroutinesCHECK_INPUTand

ERROR_EXIT,
– Zeros_Module , which contains the subroutinesAPPROXIMATEandINPROD,
– Refine_Module , which contains the subroutinesREFINE andNEWTON,
– Split_Module , which contains the subroutinesINBOXandSPLITBOX,

P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232 221

– and finally the modulesError_Module , Quad_Module , Zeal_Input_Module , Function_Input_
Module andIntegration_Input_Module .

ZEAL also requires the subroutine DQAG from the package QUADPACK [8] and a number of subprograms from
the BLAS and LAPACK libraries [24].

The user can specify the values of the input parameters by editing the modulesZeal_Input_Module ,
Function_Input_Module , Integration_Input_Module . This will be discussed in Section 3.2.

The main programMain has the following form:

PROGRAM Main

USE Precision_Module
USE Zeal_Module

IMPLICIT NONE

INTEGER :: TOTALNUMBER, DISTINCTNUMBER, REFINEDNUMBER
INTEGER, DIMENSION(:), POINTER :: MULTIPLICITIES
LOGICAL, DIMENSION(:), POINTER :: REFINEMENT_OK
COMPLEX(KIND=DP), DIMENSION(:), POINTER :: ZEROS, FZEROS

CALL ZEAL(TOTALNUMBER,DISTINCTNUMBER,ZEROS,FZEROS, &
MULTIPLICITIES,REFINEDNUMBER,REFINEMENT_OK)

END PROGRAM Main

The subroutineZEAL returns the total number of zeros of the given function that lie inside the given rectangular
region, the number of mutually distinct zeros, the refined approximations for the zeros and the values that the
function takes at these points, the corresponding multiplicities, the number of approximations for the zeros (as
computed by the subroutineAPPROXIMATE) that ZEAL has been able to refine successfully via the modified
Newton’s method, and finally for each computed zero a logical variable that indicates whether this refinement
procedure has been successful or not.

In the design of ZEAL we have followed the recommendations for precision level maintenance described by
Buckley [25]. The parameterDPthat appears in the declaration of the variablesZEROSandFZEROSis defined in
Precision_Module ,

INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(15,70)

It determines the precision to which all the floating point calculations are to be done. Its current value corresponds
to Fortran 77’sDOUBLE PRECISION7 .

Let us briefly describe the various parts of ZEAL.
The subroutineINBOXcalculates the total number of zeros that lie inside the rectangular box given by the user.

If some of the zeros lie too close to the boundary of this box and the quadrature routine DQAG fails, thenINBOX
perturbs the box slightly and enlarges it.

7 This observation is important for the following reason. As documented in itsmakefile , ZEAL uses certain Fortran 77 routines from
QUADPACK, BLAS and LAPACK. To enable the user to compile the necessary routines from BLAS and LAPACK in case these libraries are
not available on his/her computer system, we have included them with our distribution of ZEAL. However, we have included only theDOUBLE
PRECISION version of these routines and hence they should be replaced by the correspondingSINGLE PRECISION routines in case a
change toDPrequires this. The same holds for the subroutine DQAG from QUADPACK.

222 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232

The subroutineSPLITBOX takes a box and splits it into two boxes. A symmetric splitting, which proceeds by
halving the longest edges, is tried first. If the calculation of the integral along the inner edge fails, then it is assumed
that some of the zeros lie too close to this edge and the inner edge is shifted.

The subroutineAPPROXIMATEcontains our implementation of the algorithm of Kravanja et al. [7]. The
symmetric bilinear form (3) is evaluated via the subroutineINPROD.

The subroutineNEWTONcontains our implementation of the modified Newton’s method. The subroutine
REFINE callsNEWTONto refine the approximations for the zeros thatAPPROXIMATEhas computed. IfNEWTON
fails, thenREFINE tries again from a nearby point. If after eight attemptsNEWTONstill fails, then REFINE
indicates that it has been unable to refine the given approximation successfully.

The subroutineZEAL forms the main part of the package.ZEAL starts by callingCHECK_INPUTto check if
the input parameters specified by the user are proper. Next it callsINBOX. If there are no zeros inside the user’s
box, then the program stops. If there are less thanM zeros inside the box (where the value ofM can be specified
in Zeal_Input_Module), thenAPPROXIMATEandREFINE are called. Else, the box is given toSPLITBOX.
The two boxes returned bySPLITBOX are examined. A box that does not contain any zero is abandoned. A box
that contains less thanM zeros is given toAPPROXIMATEandREFINE. A box that contains more thanM zeros
is put in a list. ThenZEAL takes a next box from this list and callsSPLITBOX. This procedure is repeated until all
the zeros have been computed, together with their respective multiplicities.

The program execution terminates normally after the completion of its task. This type of termination is indicated
by the value1 of the variableINFO, which is a global variable declared in the moduleError_Module . If the
value of this parameter is different from1, then the termination of the program is abnormal. The cases of abnormal
termination are the following:
INFO=0 Improper input parameters.
INFO=2 The procedure for the calculation of the total number of zeros has failed.
INFO=3 The procedure for the isolation of the zeros has failed.
INFO=4 The procedure for the computation of the zeros has failed.

3.2. ZEAL’s user interface

The user can specify the input parameters by editing three different files. (This splitting was done to speed up
the recompilation in case only a few parameters are changed.)

In the moduleZeal_Input_Module the following parameters have to be set:
LV a real array of length 2 that contains thex- andy-coordinates of the left lower vertex of the rectangle

that is to be examined.
H a real array of length 2 that specifies the size of this rectangle along thex- andy-direction.
M an integer that determines the maximum number of zeros (counting multiplicities) that are considered

within a subrectangle.M has to be larger than the maximum of the multiplicities of the zeros.
A recommended value is 5.

ICON an integer in{1, . . . ,4} that specifies which calculations are to be done:
1 calculation of the total number of zeros, only,
2 calculation of the total number of zeros and isolation of a set of subrectangles, each of which

contains at mostMzeros,
3 calculation of the total number of zeros and computation of all the zeros, together with their

respective multiplicities,
4 calculation of the total number of zeros and computation ofNR zeros, together with their

respective multiplicities.
Note that if ICON=4 the user must also supply the desired number of zerosNR. In the other cases
(ICON=1,2,3) a value ofNRmay be supplied but it will not be used by the package.

P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232 223

VERBOSE a logical variable. ZEAL is allowed to print information (concerning the user’s input and the computed
results) if and only ifVERBOSEis equal to.TRUE.

FILES a logical variable. IfFILES is set equal to.TRUE. then ZEAL generates the fileszeros.dat
andmult.dat . They contain the computed approximations for the zeros as well as their respective
multiplicities. ZEAL also writes the filefzeros.dat , which contains the values that the function
takes at the computed approximations for the zeros.

IFAIL an integer that determines how errors are to be handled. We follow the NAG convention:
1 soft silent error– control is returned to the calling program.

-1 soft noisy error– an error message is printed and control is returned to the calling program.
0 hard noisy error– an error message is printed and the program is stopped.

These parameters determine the geometry of the rectangular region that is to be considered and the type of
calculation that ZEAL will perform.

In the moduleIntegration_Input_Module the following parameters have to be set:
NUMABS a real variable that determines the absolute accuracy to which the integrals that calculate the number

of zeros are to be evaluated. IfNUMABS = 0.0_DP, then only a relative criterion will be used.
NUMREL a real variable that determines the relative accuracy to which the integrals that calculate the number of

zeros are to be evaluated. IfNUMREL = 0.0_DP, then only an absolute criterion will be used.
If NUMABSandNUMRELare both too small, then the numerical integration may be time-consuming.
If they are both too large, then the calculated number of zeros may be wrong. The default values
of NUMABSand NUMRELare 0.07_DP and 0.0_DP , respectively. These variables are used by
QUADPACK.

INTABS a real variable that determines the absolute accuracy to which the integrals that are used to compute
approximations for the zeros are to be calculated. IfINTABS = 0.0_DP , then only a relative
criterion will be used.

INTREL a real variable that determines the relative accuracy to which the integrals that are used to compute
approximations for the zeros are to be calculated. IfINTREL = 0.0_DP , then only an absolute
criterion will be used.
If INTABS andINTREL are both too small, then the numerical integration may be time-consuming.
If they are both too large, then the approximations for the zeros may be very inaccurate and Newton’s
method, which is used to refine these approximations (seeNEWTONZandNEWTONF), may fail. The
default values ofINTABS andINTREL are0.0_DP and1.0E-12_DP , respectively. These variables
are used by QUADPACK.

EPS_STOPa real variable that is used in the stopping criterion that determines the value ofn, the number of
mutually distinct zeros. IfEPS_STOPis too large, then the computed value ofn may be smaller than
the actual number of distinct zeros. IfEPS_STOPis too small, then the computed value ofn may be
larger than the actual number of distinct zeros, especially in case the function has many multiple zeros.
A recommended value is1.0E-08_DP .

These parameters are related to numerical integration.
Finally, in the moduleFunction_Input_Module the user has to specify two parameters that are used in

the stopping criteria for Newton’s method, the functionf whose zeros ZEAL has to compute as well as its first
derivative. He or she also has to give some information about the analyticity off inside the considered region.

The parameters used to control the Newton’s process are the following:
NEWTONZandNEWTONFare real variables which should be specified in caseICON = 3 or 4. They are used

as follows. The modified Newton’s method, which takes into account the multiplicity of a zero and
converges quadratically, is used to refine the calculated approximations for the zeros. The iteration
stops if the relative distance between two successive approximations is at mostNEWTONZor the
absolute value of the function at the last approximation is at mostNEWTONFor if a maximum number
of iterations (say, 20) is exceeded.

224 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232

The considered functionf and its first derivativef ′ should be defined via the subroutineFDF, which takes the
following form:

SUBROUTINE FDF(Z,F,DF)

COMPLEX(KIND=DP), INTENT(IN) :: Z
COMPLEX(KIND=DP), INTENT(OUT) :: F, DF

F = ...
DF = ...

END SUBROUTINE FDF

If any cases wheref is not analytic are known, they have to be specified using the logical functionVALREG.
Given a rectangular region specified by its left lower vertex and the sizes of its edges,VALREGdecides whether
the functionf is analytic inside this region or not. ZEAL uses this information to decide whether it is allowed to
move the edge of a box or not.VALREGhas the following form:

FUNCTION VALREG(LV,H)

LOGICAL VALREG
REAL(KIND=DP), INTENT(IN) :: LV(2), H(2)

VALREG = ...

END FUNCTION VALREG

For example, iff is analytic in the entire complex plane, then one may use the statement

VALREG = .TRUE.

If f has a branch cut along the non-positive real axis, then one may write

VALREG = .NOT. (LV(2)*(LV(2)+H(2)) <= 0.0_DP .AND. &
LV(1) <= 0.0_DP)

This concludes our discussion of the structure of ZEAL and its user interface.

4. A few examples of how to use ZEAL

We will now discuss a few numerical examples.
Suppose thatf (z)= e3z + 2zcosz− 1 and that

W = {z ∈C: −26Rez6 2, −26 Im z6 3}.
In other words,W is the rectangular region[−2,2] × [−2,3]. Therefore, we have to define the input parameters
LV andHas

LV = (/-2.0_DP,-2.0_DP/) and H = (/ 4.0_DP, 5.0_DP/) .

We setM = 5. The logical variableVERBOSEis set to.TRUE. We start by calculating only the total number of
zeros,ICON = 1. ZEAL outputs the following.

P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232 225

TEST RUN OUTPUT # 1

This is ZEAL. Version of June 1999.

Input:

LV = -2.00000000000000 -2.00000000000000
H = 4.00000000000000 5.00000000000000

M = 5
ICON = 1

FILES = T

===

Results:

The following box has been considered:

LV = -2.00000016391277 -2.00000019371510
H = 4.00000035762787 5.00000041723251

Total number of zeros inside this box = 4

The function has four zeros inside the given box. We now ask ZEAL to compute approximations for all these zeros,
ICON=3.

TEST RUN OUTPUT # 2

This is ZEAL. Version of June 1999.

Input:

LV = -2.00000000000000 -2.00000000000000
H = 4.00000000000000 5.00000000000000

M = 5
ICON = 3

FILES = T

===

Results:

The following box has been considered:

LV = -2.00000016391277 -2.00000019371510
H = 4.00000035762787 5.00000041723251

Total number of zeros inside this box = 4
Number of boxes containing at most 5 zeros = 1

226 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232

These boxes are given by:

1) LV = -2.00000016391277 -2.00000019371510
H = 4.00000035762787 5.00000041723251

Total number of zeros inside this box = 4

Final approximations for the zeros and verification:

1) Number of mutually distinct zeros inside this box = 4

z = (-1.84423395326221 ,-0.729696337329436E-29)
f(z) = (0.222044604925031E-15, 0.297690930716218E-28)
multiplicity = 1

z = (0.530894930292930 , 1.33179187675112)
f(z) = (0.888178419700125E-15, 0.222044604925031E-14)
multiplicity = 1

z = (0.530894930292930 ,-1.33179187675112)
f(z) = (-0.266453525910038E-14,-0.444089209850063E-15)
multiplicity = 1

z = (0.277555756299546E-16, 0.732694008769276E-26)
f(z) = (0.00000000000000 , 0.366347004384638E-25)
multiplicity = 1

If we setM = 2, then ZEAL outputs the following.

TEST RUN OUTPUT # 3

This is ZEAL. Version of June 1999.

Input:

LV = -2.00000000000000 -2.00000000000000
H = 4.00000000000000 5.00000000000000

M = 2
ICON = 3

FILES = T

===

Results:

The following box has been considered:

LV = -2.00000016391277 -2.00000019371510
H = 4.00000035762787 5.00000041723251

P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232 227

Total number of zeros inside this box = 4

Number of boxes containing at most 2 zeros = 3

These boxes are given by:

1) LV = -2.00000016391277 0.500000014901161
H = 4.00000035762787 2.50000020861626

Total number of zeros inside this box = 1

2) LV = -2.00000016391277 -2.00000019371510
H = 2.00000017881393 2.50000020861626

Total number of zeros inside this box = 2

3) LV = 0.149011611938477E-07 -2.00000019371510
H = 2.00000017881393 2.50000020861626

Total number of zeros inside this box = 1

Final approximations for the zeros and verification:

1) Number of mutually distinct zeros inside this box = 1

z = (0.530894930292931 , 1.33179187675112)
f(z) = (0.888178419700125E-15,-0.177635683940025E-14)
multiplicity = 1

2) Number of mutually distinct zeros inside this box = 2

z = (-1.84423395326221 ,-0.551251254781237E-21)
f(z) = (0.222044604925031E-15, 0.224891493487409E-20)
multiplicity = 1

z = (-0.501336236251204E-20,-0.135361644895767E-20)
f(z) = (0.00000000000000 ,-0.676808224478837E-20)
multiplicity = 1

3) Number of mutually distinct zeros inside this box = 1

z = (0.530894930292931 ,-1.33179187675112)
f(z) = (0.888178419700125E-15,-0.444089209850063E-15)
multiplicity = 1

Finally, suppose that we want ZEAL to compute only two zeros. We setICON=4 andNR=2.

TEST RUN OUTPUT # 4

This is ZEAL. Version of June 1999.

228 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232

Input:

LV = -2.00000000000000 -2.00000000000000
H = 4.00000000000000 5.00000000000000

M = 2
NR = 2
ICON = 4

FILES = T

===

Results:

The following box has been considered:

LV = -2.00000016391277 -2.00000019371510
H = 4.00000035762787 5.00000041723251

Total number of zeros inside this box = 4

Number of boxes containing at most 2 zeros = 3

These boxes are given by:

1) LV = -2.00000016391277 0.500000014901161
H = 4.00000035762787 2.50000020861626

Total number of zeros inside this box = 1

2) LV = -2.00000016391277 -2.00000019371510
H = 2.00000017881393 2.50000020861626

Total number of zeros inside this box = 2

3) LV = 0.149011611938477E-07 -2.00000019371510
H = 2.00000017881393 2.50000020861626

Total number of zeros inside this box = 1

Requested number of mutually distinct zeros = 2

Final approximations for the zeros and verification:

1) Number of mutually distinct zeros inside this box = 1

z = (0.530894930292931 , 1.33179187675112)
f(z) = (0.888178419700125E-15,-0.177635683940025E-14)
multiplicity = 1

P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232 229

2) Number of mutually distinct zeros inside this box = 2

z = (-1.84423395326221 , -0.551251254781237E-21)
f(z) = (0.222044604925031E-15, 0.224891493487409E-20)
multiplicity = 1

Suppose thatf (z)= z2(z− 1)(z− 2)(z− 3)(z− 4)+ zsinz and letW be the rectangular region determined by

LV = (/-0.5_DP,-0.5_DP/) and H = (/ 6.0_DP, 2.0_DP/) .

Note thatf has a double zero at the origin. We setM=5andICON=3.

TEST RUN OUTPUT # 5

This is ZEAL. Version of June 1999.

Input:

LV = -0.500000000000000 -0.500000000000000
H = 6.00000000000000 2.00000000000000

M = 5
ICON = 3

FILES = T

===

Results:

The following box has been considered:

LV = -0.500000163912773 -0.500000193715096
H = 6.00000035762787 2.00000041723251

Total number of zeros inside this box = 6

Number of boxes containing at most 5 zeros = 2

These boxes are given by:

1) LV = -0.500000163912773 -0.500000193715096
H = 3.00000017881393 2.00000041723251

Total number of zeros inside this box = 4

2) LV = 2.50000001490116 -0.500000193715096
H = 3.00000017881393 2.00000041723251

Total number of zeros inside this box = 2

230 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232

Final approximations for the zeros and verification:

1) Number of mutually distinct zeros inside this box = 3

z = (-0.555111512312578E-15, 0.774442308175991E-15)
f(z) = (-0.729030243977503E-29,-0.214950920445209E-28)
multiplicity = 2

z = (1.18906588973011 , 0.372342347264318E-27)
f(z) = (0.00000000000000 ,-0.147405864729133E-26)
multiplicity = 1

z = (1.72843498616506 , 0.189326617253043E-27)
f(z) = (0.666133814775094E-15, 0.904485799870076E-27)
multiplicity = 1

2) Number of mutually distinct zeros inside this box = 2

z = (3.01990732809571 , 0.481205152184817E-28)
f(z) = (-0.105471187339390E-14,-0.104420423665203E-26)
multiplicity = 1

z = (4.03038191606047 , 0.394430452610506E-28)
f(z) = (0.150990331349021E-13, 0.421365501391524E-26)
multiplicity = 1

Finally, suppose thatf (z)= z2(z− 2)2[e2z cosz+ z3− 1− sinz] and letW be the region determined by

LV = (/-1.0_DP,-1.0_DP/) and H = (/ 4.0_DP, 2.0_DP/) .

Note thatf has a triple zero at the origin and a double zero atz= 2. We setM=5andICON=3.

TEST RUN OUTPUT # 6

This is ZEAL. Version of June 1999.

Input:

LV = -1.00000000000000 -1.00000000000000
H = 4.00000000000000 2.00000000000000

M = 5
ICON = 3

FILES = T

===

Results:

The following box has been considered:

P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232 231

LV = -1.00000016391277 -1.00000019371510
H = 4.00000035762787 2.00000041723251

Total number of zeros inside this box = 8

Number of boxes containing at most 5 zeros = 2

These boxes are given by:

1) LV = -1.00000016391277 -1.00000019371510
H = 2.00000017881393 2.00000041723251

Total number of zeros inside this box = 5

2) LV = 1.00000001490116 -1.00000019371510
H = 2.00000017881393 2.00000041723251

Total number of zeros inside this box = 3

Final approximations for the zeros and verification:

1) Number of mutually distinct zeros inside this box = 3

z = (-0.460714119728972 ,-0.625427769347768)
f(z) = (0.139986423568309E-14, 0.948597781037581E-14)
multiplicity = 1

z = (-0.749400541621981E-15, 0.243022572576853E-15)
f(z) = (-0.120813528135193E-44, 0.162080855465761E-44)
multiplicity = 3

z = (-0.460714119728972 , 0.625427769347768)
f(z) = (-0.383075548142431E-15,-0.579735693200359E-14)
multiplicity = 1

2) Number of mutually distinct zeros inside this box = 2

z = (2.00000000000000 , 0.114762494171498E-14)
f(z) = (-0.122427664771369E-26,-0.678041409962963E-27)
multiplicity = 2

z = (1.66468286974552 , -0.863802691217008E-28)
f(z) = (0.276741773088933E-15, 0.662785838981764E-27)
multiplicity = 1

5. Concluding remarks

We have applied ZEAL to various analytic functions and rectangular regions and have found that it behaves
predictably and accurately. ZEAL calculates the total number of zeros that lie inside the given box and then

232 P. Kravanja et al. / Computer Physics Communications 124 (2000) 212–232

computes approximations for these zeros, together with their respective multiplicities. Our package does not require
initial approximations for the zeros.

The user will appreciate the flexibility offered by the input parameterICON. If nothing is known about the zeros
that lie inside the given box, one may call ZEAL withICON = 1 to obtain the total number of zeros. Then one
may proceed withICON = 3 to compute approximations for all these zeros, or, if less than the total number
of zeros are required, withICON = 4 andNRequal to the requested number of zeros. If only a set of boxes is
required, each of which contains less thanMzeros (counting multiplicities), then one may setICON = 2.

Acknowledgements

One of the authors (P.K.) would like to thank the Department of Mathematics of the University of Patras
(Patras, Greece) for its hospitality, during which time this paper was initiated, and Vlaamse Leergangen Leuven for
supporting his visit to Patras. He also wishes to acknowledge the support granted to him by the Flemish Institute
for the Promotion of Scientific and Technological Research in the Industry (IWT).

This research was partially supported by projects # G.0278.97 (“Orthogonal Systems and their Applications”)
and # G.0261.96 (“Counting and Computing all Isolated Solutions of Systems of Nonlinear Equations”) of the
Fund for Scientific Research – Flanders (FWO – Vlaanderen).

References

[1] L.M. Delves, J.N. Lyness, Math. Comput. 21 (1967) 543.
[2] L.C. Botten, M.S. Craig, R.C. McPhedran, Comput. Phys. Commun. 29 (1983) 245.
[3] N.I. Ioakimidis, Quadrature methods for the determination of zeros of transcendental functions – a review, in: Numerical Integration:

Recent Developments, Software and Applications, P. Keast, G. Fairweather, eds. (Reidel, Dordrecht, 1987) pp. 61–82.
[4] M.P. Carpentier, A.F.D. Santos, J. Comput. Phys. 45 (1982) 210.
[5] J.H. Wilkinson, Numer. Math. 1 (1959) 150.
[6] T.-Y. Li, SIAM J. Numer. Anal. 20 (1983) 865.
[7] P. Kravanja, T. Sakurai, M. Van Barel, BIT 39 (4) (1999) 646.
[8] R. Piessens, E. de Doncker-Kapenga, C.W. Überhuber, D.K. Kahaner, QUADPACK: A Subroutine Package for Automatic Integration,

Springer Series in Computational Mathematics, Vol. 1 (Springer, Berlin, 1983).
[9] P. Kravanja, O. Ragos, M.N. Vrahatis, F.A. Zafiropoulos, Comput. Phys. Commun. 113 (1998) 220.

[10] A. Draux, Polynômes Orthogonaux Formels – Applications, Lecture Notes in Mathematics, Vol. 974 (Springer, Berlin, 1983).
[11] A. Draux, Numer. Algorithms 11 (1996) 143.
[12] M.H. Gutknecht, SIAM J. Matrix Anal. Appl. 13 (1992) 594.
[13] M.H. Gutknecht, SIAM J. Matrix Anal. Appl. 15 (1994) 15.
[14] W.B. Gragg, M.H. Gutknecht, Stable look-ahead versions of the Euclidean and Chebyshev algorithms, in: Approximation, Computation:

A Festschrift in Honor of Walter Gautschi, R.V.M. Zahar, ed. (Birkhäuser, Basel, 1994) pp. 231–260.
[15] W. Gautschi, How (un)stable are Vandermonde systems?, in: Asymptotic and Computational Analysis: Conference in Honor of Frank W.J.

Olver’s 65th Birthday, Lecture Notes in Pure and Applied Mathematics, Vol. 124, R. Wong, ed. (Marcel Dekker, Basel, 1990) pp. 193–210.
[16] W. Gautschi, G. Inglese, Numer. Math. 52 (1988) 241.
[17] W. Gautschi, Math. Comput. 24 (1970) 245.
[18] W. Gautschi, SIAM J. Sci. Stat. Comput. 3 (1982) 289.
[19] W. Gautschi, Numer. Math. 48 (1986) 369.
[20] A. Bultheel, M. Van Barel, Linear Algebra, Rational Approximation and Orthogonal Polynomials, Studies in Computational Mathematics,

Vol. 6 (North-Holland, Amsterdam, 1997).
[21] A.W. Bojanczyk, G. Heinig, J. Complexity 10 (1994) 142.
[22] S. Cabay, R. Meleshko, SIAM J. Matrix Anal. Appl. 14 (1993) 735.
[23] R.W. Freund, H. Zha, Numer. Math. 64 (1993) 295.
[24] E. Anderson et al., LAPACK Users’ Guide (SIAM, Philadelphia, PA, 1994).
[25] A.G. Buckley, ACM Trans. Math. Software 20 (1994) 308.

