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Abstract

We study the deformed harmonic oscillator in the presence of friction.
We use the following time dependent Hamiltonian:

H(p̂1, q̂1, t) = e−2γt 1
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Dissipation arises from interactions between the observed system and
another one, often called the reservoir or the bath, into which the energy
flows in an irreversible manner. A method, used at first by H. Bateman to
apply the usual canonical quantization method, is based upon the procedure
of doubling the number of degrees of freedom so as to deal with an effective
isolated system.

In this paper we use the following Hamiltonian (m = 1):
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which is actually a damped harmonic oscillator coupled to its time - reserved
image. The two Hamiltonians do not commute and the basic operators satisfy
the following commutation relations of non commuting geometry.

[p̂1, p̂2] = iλ [q̂1, q̂2] = iθ [q̂1, p̂1] = i~ [q̂2, q̂2] = i~

where λ, θ are real parameters.
We calculate the time evolution operator and we find the exact propagator

of the system.
The resulting propagator depends on the deformed parameter µ and is

a two - dimensional Gaussian type distribution function of the commuting
observables τ1 = q1 and τ2 = q2 − (θ/~)p1. The oscillating terms depend on
the frequencies Ω1 and Ω2.
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We investigate the thermodynamic properties of the system using the
standard canonical density matrix. We find the statistical distribution func-
tion and the partition function.

We calculate the specific heat for the limiting case of critical damping,
where the frequencies of the system vanish Ω1 = 0, Ω2 = 0, which can
be achieved if ω1 = ±ω2 = γ/

√
µ =

√
λ/θ. The specific heat c of this

system posseses some singularities (Fig.1) which disappear in the classical
limit ~→ 0 (Fig.2). The values of T where the denominator of the partition
function becomes zero, are
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where k is the Boltzmann constant and T0 = ~
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Finaly we study the case where the the deformed parameter µ becomes
zero. The propagator is again a Gaussian type distribution but now it is a
function of the three commuting observables τ1 = q1, τ2 = q2 − (θ/~)p1 and
π2 = p2 +(λ/~)q1. The propagator depends on the following parameters and
frequencies

~ =
√

λθ, σ =

√
λ

θ
, ω̂ =

1

σ

√
(σ2 − ω2

2)(ω
2
1 − σ2), Ω =

√
ω̂2 − γ2

The specific heat has some singularities and also some zeros for the various
values of the parameters (Fig.3) and (Fig.4).
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Figure 1: Critical damping. The specific heat for T0 = 1.
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Figure 2: Critical damping. The specific heat for T0 = i.
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Figure 3: The case µ = 0. The specific heat for γ = 1 and Ω = 2 i, Ω = 0.8 i.
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Figure 4: The case µ = 0. The specific heat for γ = i and Ω = 0, Ω = 0.2,
Ω = 2.
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