Transients in the Synchronization of Oscillator Arrays

Carlos E. Cantos, David K. Hammond and J. J. P. Veerman

March 24, 2015

Abstract

The purpose of this note is threefold. First we state a few conjectures that allow us to rigorously derive a theory which is asymptotic in N (the number of agents) that describes transients in large arrays of (identical) linear damped harmonic oscillators in \mathbb{R} with completely decentralized nearest neighbor interaction. We then use the theory to establish that in a certain range of the parameters transients grow linearly in the number of agents (and faster outside that range of parameters). Finally, in the regime where this linear growth occurs we give the constant of proportionality as a function of the signal velocities (see [3]) in each of the two directions. As corollaries we show that symmetric interactions are far from optimal and that all these results are independent of (reasonable) boundary conditions.

1 Introduction

In this paper we formulate a theory for transients of certain large arrays of linear damped harmonic oscillators. For our purposes transients are solutions of a high-dimensional system $\dot{\zeta} = f(\zeta)$ that converge to a stable equilibrium. We investigate transients of the linearized equations, i.e. $\dot{\zeta} = M\zeta$ where M is a square matrix. For such systems, if the spectrum of M consists of eigenvalues with strictly negative real part, then for fixed N it holds that $\lim_{t \to \infty} \zeta(t) = 0$. However, it is well-known (see [25] and [24]) that transients of high dimensional systems cannot successfully be analyzed by looking at the spectrum of the linear operators unless the operator is normal. An $N \times N$ square matrix M is normal if it commutes with its (conjugate) transpose, or equivalently (by the spectral theorem), if its eigenvectors form an orthonormal basis of \mathbb{C}^N. If the operator M is not normal then the magnitude of the transients (for fixed t) may grow without bound as N increases. The spectrum of the operator thus gives incomplete information about high dimensional transients.

In this work we consider one dimensional “flocks” of agents on the real line, which interact with their neighbors. We label the agents from 0 to N (from right to left) and describe the interaction as, for all $k \in \{0, \ldots, N\}$:

$$\ddot{x}_k = f_k(x_k - x_{k-1}, x_k - x_{k+1}, \dot{x}_k - \dot{x}_{k-1}, \dot{x}_k - \dot{x}_{k+1}),$$

(1.1)

where each agents acceleration is determined by the differences between its own position and velocity and those of its neighbors. Linearizing these equations will yield a system that can also be viewed as an array of (linear damped harmonic) oscillators.

The orbit, $x_0(t)$, of the leader is prescribed as $x_0(t) = \max\{0, v_0t\}$ (to the right). We formulate a theory that quantitatively describes the response of the flock if N is large. Before we do so, it will serve us well to keep one of the main applications of our theory in mind. Suppose we have a long sequence of cars equipped with automatic pilots waiting for a traffic light. At $t = 0$ the light turns green and the lead car (or leader) acquires constant speed
$v_0 > 0$. Each car is equipped with a sensor that perceives relative position and velocity of each of their neighbors (back and front). This input is then used as feedback for the acceleration of each of the cars. The purpose is that the cars follow each other as well as possible, until everyone moves behind the leader with the same speed. In this system, the acceleration of the leader causes a perturbation throughout the system (the transient), until the system, assuming it is asymptotically stable, settles down again. The question is: What is the algorithm for the feed-back that minimizes the transients? While a lot of work has been done to find interesting systems of differential equations that can simulate flock behavior — many of these consist of nonlinear equations (see [10], [14]) — our emphasis is more related to performance. We aim to characterize the transient when the number of cars is large.

We formulate a theory (for the indicated initial conditions) that is comprehensive in that it covers all parameter values of the models we consider (including the different boundary conditions), explicit in the sense that it gives explicit answers for what the transients are, and simple in the sense that it generalizes to more complex situations. The cases covered by the theory developed in this paper cover all possible linearizations of Equation 1.1 (and that includes non-symmetric interactions and different boundary conditions). To the best of our knowledge there is no literature that considers (let alone analyzes) the problem in this generality. The price we pay for such a general theory is that we cannot prove all our statements. We need some conjectures, and these will be spelled out in Section 3.

In Section 2 we set the definitions and sketch some of our previous results. Those results do not depend on conjectures, but are more restrictive and the methods are hard to generalize. We also introduce the notion of flock stability. Flock stability means that (time-)responses to initial perturbations grow less than exponential in the number N of agents as N tends to infinity. This notion is independent of that of asymptotic stability which deals with the growth of the response of a single system (with N fixed) the response as $t \to \infty$.

Section 3 contains our main results. We set out a number of conjectures that allow us to rigorously derive a theory for these systems. Using this theory we then find the parameter range for which parameters the transients are well-behaved (Proposition 3.5). Within that range, solutions of our system are traveling waves with high frequency attenuation, and we give a precise analytical description of the transients as functions of the parameters (Theorem 3.7). The theory is asymptotic in the number of agents.

Since our theory rests on conjectures we need to verify its conclusions. In Section 4 we compare our results with measurements done in 360 simulations. The results are in excellent agreement. We close with some final remarks in Section 5.

2 Nearest Neighbor Flocks in \mathbb{R}

The form of the general model in 1.1 is decentralized, which we interpret (following following [26] and [29]) to mean the following. In a decentralized flock the only information an agent receives are the position and velocity relative to it of nearby agents, i.e. the acceleration of the kth agent is a function of the differences $x_k - x_i$ and $\dot{x}_k - \dot{x}_i$ where i runs over the neighbors of k and agents do not receive information from an outside source. The only exception to this is the leader, whose orbit is prescribed. We note that this definition has along history in the literature (e.g. [5], [8], [6]).

We wish to consider flocks of identical agents, that support the coherent motion solutions given by

\[
\forall k \in \{0, \cdots N\} : x_k = v_0 t + x_0 - \Delta k
\]

for all real constants x_0 and v_0, and for positive spacing Δ.

It is easy to check that these are solutions of the Equation 1.1 if and only if for all k we have $f_k(-\Delta, \Delta, 0, 0) = 0$. This motivates the following definition:

Definition 2.1 We consider the system given by Equation 1.1 for all $k \in \{0, \cdots N\}$, where for $k \in \{1, \cdots N-1\}$ the f_k are equal to $f : \mathbb{R}^4 \to \mathbb{R}$, $f_0 = 0$, and f_N may be different from f due to boundary conditions. In addition we require that there is $\Delta > 0$ so that $f_k(-\Delta, \Delta, 0, 0) = 0$.

We linearize systems satisfying Definition 2.1 around a coherent solution by substituting

\[
x_k = v_0 t + x_0 - \Delta k + \varepsilon z_k
\]
into Equation 1.1. Working out to first order in ε and using $f_k(-\Delta, \Delta, 0, 0) = 0$, we obtain the following Proposition:

Proposition 2.2 Linearizing of the system given in Definition 2.1 around the coherent solutions implies, for all $k \in \{1, \cdots, N-1\}$:

$$\ddot{z}_k = g_x [\rho_{z,-1} z_{k-1} + \rho_{z,0} z_k + \rho_{z,1} z_{k+1}] + g_v [\rho_{v,-1} \dot{z}_{k-1} + \rho_{v,0} \dot{z}_k + \rho_{v,1} \dot{z}_{k+1}]$$

(2.1)

Here g_x, g_v, $\rho_{z,i}$ and $\rho_{v,i}$ are constants; $\sum_j \rho_{x,j} = 0$, and $\sum_j \rho_{v,j} = 0$.

Completing the description of the linearized system requires specifying both the orbit of the leader, and the equation for the last agent z_N. For the last agent we have to make a choice for the boundary conditions. Some reasonable choices (but not the only ones) are enumerated in the Definition below.

Definition 2.3 (Boundary Conditions) Let S_N be the linearized system in Proposition 2.2, where the first agent’s motion is described by:

$$z_0(t) = v_0 \phi_c(t)$$

(2.2)

where ϕ_c satisfies $\phi_c(t) = 0$ for $t < -\varepsilon$ and $\dot{\phi}_c(t) = 1$ for $t > \varepsilon$, and the equation for the last agent is

$$\ddot{z}_N = g_x \beta_x [-z_{N-1} + \dot{z}_N] + g_v \beta_v [-\dot{z}_{N-1} + \dot{z}_N].$$

In addition, we require $\rho_{x,0} \neq 0$ and $\rho_{v,0} \neq 0$. The parameters β_x and β_v are specified by one of the following choices:

1. Variable mass boundary conditions: $\beta_x = -\rho_{x,-1}$ and $\beta_v = -\rho_{v,-1}$
2. Regular boundary conditions: $\beta_x = \beta_v = 1$

The first set of boundary conditions arises from simply leaving out the dependence on the relative velocity and position of the rear-neighbor. When $\rho_{x,1} = \rho_{x,-1}$ and $\rho_{v,1} = \rho_{v,-1}$, these boundary conditions give rise to symmetric Laplacian matrices L_x and L_v. For this reason that boundary condition is most often used (e.g. see [31], [15]). Notice though that physically this is akin to changing the mass of the last car. In that sense the second set of boundary conditions (used by other authors, e.g. [5]) is more realistic.

We now give a definition of flock stability that is sufficient for our considerations. (More details can be found in [27, 28, 23].) The definition of asymptotically stable is standard (see [18]).

Definition 2.4 (Flock stability) The collection of systems S_N of Definition 2.3 is called flock stable if it is asymptotically stable and if $\max_{t \in \mathbb{R}} |z_N(t)|$ grows sub-exponentially in N.

Earlier characterizations of flocks concentrated on string stability, which is the variation of the relative distances between neighbors (e.g. [6], [17], [7], [20], [16], [21], [22], [13]). This is hard to generalize for more complicated flocks in dimension 2 or higher. Also most of these papers, and many others ([13], [31]), in fact consider the size of frequency response as a measure of stability. While this is mathematically equivalent to the time-domain response, it is often difficult or impossible to calculate the time-response from the frequency response (see for instance [27], [28], [9], [12]). Since it is our interest to calculate precise shapes and sizes of transients in the time-domain, we use a very different approach.

We now summarize what is known about the transients of the system in Definition 2.1. In Figure 2.1 a schematic description of the response when the leader leaves at $t = 0$ with unit velocity is shown. Each represents the orbit of an agent relative to the leader (so that the leader appears to stand still). In what follows we will characterize the orbit of the last agent, $z_N(t)$, in terms of its local extrema A_k, the period T, which is the (average) time elapsed between T_k and T_{k+2}, and the attenuation α, which is the (average of the) ratio A_{k+2}/A_k (see Figure 2.1).

In the following, we assume without loss of generality that $\rho_{z,0} = \rho_{v,0} = 1$ (otherwise, we could redefine g_x and g_v accordingly). Note that in this case, $\rho_{z,-1} = -1 - \rho_{z,1}$ and $\rho_{v,-1} = -1 - \rho_{v,1}$, so all of the $\rho_{v,j}$ and $\rho_{z,j}$ are determined by specifying $\rho_{v,1}$ and $\rho_{z,1}$.
Theorem 2.5

i) ([30]) Consider the system S_N (see Definition 2.3) with $\rho_{v,1} = \rho_{x,1} = -1/2$ and regular boundary conditions, and with $\phi_1(t)$ given by $\phi_1(t) = 0$ for $t < 0$ and $\phi_1(t) = t$ for $t \geq 0$. This system is flock stable and satisfies, in the limit as $N \to \infty$,

$$\alpha \to 1 \quad \text{and} \quad A_1 \to -\frac{|g_x|}{2} \quad \text{and} \quad \frac{T_2}{N} \to \frac{4\sqrt{2}}{\sqrt{|g_x|}}$$

ii) ([27], [28], [23]) The system S_N (see Definition 2.3) with $\rho_{v,1} = \rho_{x,1} = r$ and regular boundary conditions, is asymptotically stable and flock unstable for all $r \in (-1,0) \setminus \{-1/2\}$.

Remark: We note that the case $r \in (-1/2,0)$ is particularly interesting since the real parts of the non-zero eigenvalues are bounded by $\max\{-\frac{g_x}{g_v},g_v(1-2\sqrt{|r|(1+r)})\}$ while when $r = -1/2$ the real parts tend to 0 as $N \to \infty$. Nonetheless the only flock stable case is the latter.

Finally we need the nearest neighbor model S_N^* with periodic boundary conditions (no leader) studied in [3].

Definition 2.6 The standard system S_N^* is given as follows. For all $k \in \{1, \ldots, N\}$,

$$\ddot{z}_k = g_x [\rho_{x,-1}z_{k-1} + \rho_{x,0}z_k + \rho_{x,1}z_{k+1}] + g_v [\rho_{v,-1}\dot{z}_{k-1} + \rho_{v,0}\dot{z}_k + \rho_{v,1}\dot{z}_{k+1}]$$

where

$$\rho_{x,j} = \rho_{x,j+N} \quad \text{and} \quad \rho_{v,j} = \rho_{v,j+N} \quad \text{and} \quad z_j = z_{j+N}$$

Here g_x, g_v, $\rho_{x,i}$ and $\rho_{v,i}$ are constants, and $\sum_j \rho_{x,j} = 0$, and $\sum_j \rho_{v,j} = 0$.

The main result from [3] concerning S_N^* is that its solutions behave as travelling waves moving in opposite directions, with possible unequal velocities. To establish this an additional technical condition on the decay of the Fourier coefficients of the initial conditions is needed. It will be sufficient to require that $|a_m| < Bm^{-2}$ and $|b_m| < Bm^{-2}$ for some constant B (independent of N), where a_m and b_m are the discrete Fourier coefficients of $z_k(0)$ and $\dot{z}_k(0)$, respectively (considered as functions of k).

Theorem 2.7 (See [3]) Fix $K > 1$, and assume the initial conditions satisfy the Fourier decay described above. Denote the solution of S_N^* as $z_j(t)$. If S_N^* is asymptotically stable, then for all $\varepsilon > 0$ there is an $N_0 \in \mathbb{N}$ such that for any $N > N_0$ there exist waves f_+ and f_- such that:

$$|z_j(t) - f_-(j-t) - f_+(j-\epsilon t)| < \varepsilon,$$ \hspace{1cm} (2.3)
for all \(t \in \left[\frac{N}{c_+}, \frac{N}{c_-} \right] \cap \left[\frac{N}{c_+}, K \frac{N}{c_-} \right] \). Furthermore the signal velocities \(c_\pm \) (in terms of number of agents per unit time) are given by:

\[
c_\pm = -\frac{g_v(1 + 2\rho_v,1)}{2} \pm \sqrt{\frac{g_v^2(1 + 2\rho_v,1)^2}{4} - \frac{g_c}{2}},
\]

where \(c_+ > 0 \) and \(c_- < 0 \).

\[\text{Remark:} \quad \text{The boundary condition for the system } P_N \text{ may be given by } p(t) = \dot{\phi}_v(t), \text{ where } \phi_v(t) \text{ from equation (2.2) is the boundary condition for the system } S_N. \text{ By linearity, this implies solutions of of } S_N \text{ can be obtained by integrating solutions of } P_N \text{ twice.} \]

\[\text{We will use the word unit pulse for a function } p(t) \text{ satisfying the requirements given in Definition 3.1.} \]

Conjecture 3.2 If \(S_N^* \) is asymptotically unstable then \(S_N \) is asymptotically unstable or flock unstable.

Conjecture 3.3 The conclusions of Theorem 2.7 hold for \(P_N \). Fix \(K > 1 \) and \(\epsilon > 0 \), and let \(P_N \) be stable and flock stable. Then if the input pulse \(p(t) \) satisfies the appropriate Fourier decay conditions needed for Theorem 2.7, for sufficiently large \(N \), the true solution \(z_j(t) \) may be approximated by a sum of travelling waves in either direction, where this approximation holds away from the boundaries. We write this by stating that there are functions \(\psi \) and \(\phi \) so that \(\tilde{z}_j(t) = \psi(t - j/c_+) + \phi(t - j/c_-) \) satisfies

\[
|z_j(t) - \tilde{z}_j(t)| < \epsilon \tag{3.1}
\]

for all \(t \in \left[\frac{N}{c_+}, K \frac{N}{c_-} \right] \cap \left[\frac{N}{c_+}, K \frac{N}{c_-} \right], \text{ and all } 2 \leq j \leq N - 1. \]

Conjecture 3.4 (Boundary Conditions) If \(P_N \) is asymptotically stable and flock stable then the approximate travelling wave solution \(\tilde{z}_j(t) \) may be chosen so that, in addition to satisfying 3.1, \(\tilde{z}_j(t) \) satisfies the left boundary condition

\[
\frac{\partial}{\partial j} \tilde{z}_j(t) |_{j=N} = 0, \tag{3.2}
\]

and the right boundary condition \(\tilde{z}_0(t) = p(t) \).

Remarks: It is worthwhile to comment on the mathematical status of these conjectures.

We have not been able to encounter a formal proof of Conjecture 3.3, which we use to describe the dynamics of the system \(P_N \) with boundary by the dynamics of the system \(S_N^* \), without boundary. However, it seems reasonable that a traveling signal or pulse does not “feel” the boundary if it is far away from it. This principle is widely used in many areas of science (eg phonons in condensed matter physics, see for example [32] Chapter 22) and we feel justified in following the literature. This leaves Conjectures 3.2 and 3.4 as our novel Conjectures. The final justification of these assumptions lies in the agreement between their implied results and numerical simulations (Section 4). However below we give some additional reasons why these particular conjectures make sense.

Conjecture 3.2 is based on the following intuition. It is easy to see that the \(2N \)-dimensional space of solutions of the linear operator of \(S_N^* \) has \(N \) two-dimensional \((\mathbb{C}^2) \) eigenspaces that are orthogonal each other. The two eigenvectors
within each plane are typically not orthogonal. In changing the boundary condition from those in S^*_N to those of S_N, these planes lose orthogonality. Thus one expects the dynamics typical for high dimensional non-normal systems to be more pronounced in S_N than in S^*_N. The salient aspect of this kind of dynamics is the fact that asymptotically stable systems nonetheless have exponentially large transients (see [24] and [25]). Since these systems are in some sense close to another, one expects the initial behavior of both systems to be close for some time. Thus initial growth of transients in one will indicate growth of transients in the other: this growth may be due to asymptotic instability or to flock instability.

Conjecture 3.4 is related to the fact that agent N in the boundary has no restrictions of movement (as opposed to agent 0 which is held fixed, see Principle 4). This conjecture expresses what is known as a free boundary condition in the analysis of the wave equation in one dimension (see [4], Appendix 2 to Chapter 5). Note that it renders the problem independent of the details of the boundary condition in the analysis of the wave equation in one dimension (see [4], Appendix 2 to Chapter 5). Note that it renders the boundary condition independent of the details of the boundary condition (see [19] for a study of the dependence on boundary conditions.) This free boundary condition has been used when replacing a similar system with a PDE independent of the details of the boundary condition in Definition 2.3. (See [19] for a study of the dependence on boundary conditions.) This conjecture expresses what is known as a free boundary condition or to flock instability.

Proposition 3.5 A necessary condition for the system S_N to be asymptotically stable and flock stable is

$$\rho_{x, -1} = \rho_{x, 1} \quad \text{and} \quad g_x \rho_{x, 0} < 0 \quad \text{and} \quad g_v \rho_{v, 0} < 0$$

Proof: This is a direct consequence of Conjecture 3.2 and the fact that S^*_N is asymptotically stable if and only if these conditions hold (see [3]).

Remark: From now on we will restrict ourselves to systems that satisfy the conditions of this proposition. To simplify notation (and without loss of generality) we will re-scale g_x and g_v so that $\rho_{x, 0} = \rho_{v, 0} = 1$. We will write:

$$\rho_{x, 0} = \rho_{v, 0} = 1 \quad \text{and} \quad \rho_{x, -1} = \rho_{x, 1} = -1/2 \quad \text{and} \quad g_x < 0 \quad \text{and} \quad g_v < 0 \quad (3.3)$$

Proposition 3.6 Let P_N be as in Definition 3.1 and Equation 3.3. Fix the impulse $p(t)$ satisfying the conditions for Conjecture 3.3, and fix $K > 1$ and $\epsilon > 0$. For sufficiently large N, the orbit of the last agent, will satisfy

$$|z_N(t) - \tilde{z}_N(t)| < \epsilon \quad (3.4)$$

in the time interval $t \in \left[\frac{N}{c_+}, K \frac{N}{c_+}\right] \cap \left[\frac{N}{c_-}, K \frac{N}{c_-}\right]$, where

$$\tilde{z}_N(t) = \frac{c_+ - c_-}{c_+} \sum_{k=0}^{\infty} \left(\frac{c_-}{c_+}\right)^k p \left(t - \frac{N}{c_+} - \left(\frac{1}{c_+} - \frac{1}{c_-}\right) kN \right) v_0$$

Proof: By Conjecture 3.3, the solution $z_j(t)$ can be approximated within ϵ by $\tilde{z}_j(t) = \psi(t - j/c_+) + \phi(t - j/c_-)$.

It remains to analyze the effect of the boundaries at $j = N$ and $j = 0$ on the approximate solution. For this we give a reasoning analogous to the analysis in [4], Appendix 2 to Chapter 5. There are two substantial modifications. The spatial variable is discrete and the signal velocities depend on the direction. Because the system is linear we may use 1 instead of v_0 and multiply the solution we then obtain by v_0.

By the left boundary condition implied by Conjecture 3.4, we have

$$-\frac{1}{c_+} \psi' \left(t - \frac{N}{c_+} \right) - \frac{1}{c_-} \phi' \left(t - \frac{N}{c_-} \right) = 0.$$
Assume that ϕ and ψ are continuous and integrate with respect to t to get:

$$c_- \psi \left(t - \frac{N}{c_+} \right) + c_+ \phi \left(t - \frac{N}{c_-} \right) = 0. \quad (3.5)$$

Substitute $s_- = t - N/c_-$ into Equation 3.5 to get

$$\phi \left(s_- \right) = -\frac{c_-}{c_+} \psi \left(s_- - \left(\frac{1}{c_+} - \frac{1}{c_-}\right) N \right). \quad (3.6)$$
Conjecture 3.4 (at \(j = 0 \)) gives \(\psi(s_-) + \phi(s_-) = p(s_-) \). Substitute Equation 3.6 into this and we get a recursion

\[
\psi(s_-) = p(s_-) + \frac{c_-}{c_+} \psi \left(s_- - \left(\frac{1}{c_+} - \frac{1}{c_-} \right) N \right)
\]

which implies:

\[
\psi(s_-) = p(s_-) + \sum_{k=1}^{\infty} \left(\frac{c_-}{c_+} \right)^k p \left(s_- - \left(\frac{1}{c_+} - \frac{1}{c_-} \right) kN \right).
\]

We note that for finite \(s_- \), this is a finite sum because \(c_- < 0 \) and therefore \(\frac{1}{c_+} - \frac{1}{c_-} \) is positive, so that for \(k \) sufficiently large \(p \left(s_- - \left(\frac{1}{c_+} - \frac{1}{c_-} \right) kN \right) = 0 \).

On the other hand by using \(s_+ = s_- - \left(\frac{1}{c_+} - \frac{1}{c_-} \right) N \), we see that Equation 3.6 gives:

\[
\psi(s_+) = -\frac{c_+}{c_-} \phi \left(s_+ + \left(\frac{1}{c_+} - \frac{1}{c_-} \right) N \right)
\]

(3.7)

We substitute this into \(\psi(s_+) + \phi(+) = p(s_+) \) and get

\[
-\frac{c_+}{c_-} \phi \left(s_+ + \left(\frac{1}{c_+} - \frac{1}{c_-} \right) N \right) + \phi(s_+) = p(s_+)
\]

Substituting \(s_- \) back this gives

\[
\phi(s_-) = -\frac{c_-}{c_+} p \left(s_- - \left(\frac{1}{c_+} - \frac{1}{c_-} \right) N \right) + \frac{c_-}{c_+} \phi \left(s_- - \left(\frac{1}{c_+} - \frac{1}{c_-} \right) N \right)
\]

and that implies:

\[
\phi(s_-) = -\sum_{k=1}^{\infty} \left(\frac{c_-}{c_+} \right)^k p \left(s_- - \left(\frac{1}{c_+} - \frac{1}{c_-} \right) kN \right)
\]

Again this is a finite sum.

Summing \(\psi(t - j/c_+) \) and \(\phi(t - j/c_-) \) gives the general approximate solution of the system (see Theorem 2.7)

\[
\tilde{z}_j(t) = p \left(t - \frac{j}{c_+} \right) + \sum_{k=1}^{\infty} \left(\frac{c_-}{c_+} \right)^k \left[p \left(t - j/c_+ - \left(\frac{1}{c_+} - \frac{1}{c_-} \right) kN \right) - p \left(\left(t - j/c_+ - \left(\frac{1}{c_+} - \frac{1}{c_-} \right) kN \right) \right) \right]
\]

Upon setting \(j = N \), the terms telescope, and one obtains

\[
\tilde{z}_N(t) = \frac{c_- - c_+}{c_+} \sum_{k=0}^{\infty} \left(\frac{c_-}{c_+} \right)^k p \left(t - \frac{N}{c_+} - \left(\frac{1}{c_+} - \frac{1}{c_-} \right) kN \right)
\]

The quantities used in the next Theorem are defined in Figure 2.1.

Theorem 3.7 Let \(S_N \) be as in Definition 2.3 and Equation 3.3. The following holds independent of the boundary conditions. Fix a positive integer \(k_0 \). As \(N \) tends to infinity, then the orbit \(\tilde{z}_N(t) \) of the last agent may be approximated by \(\tilde{z}_N(t) \), where \(|z^N_N(t) - \tilde{z}_N(t)| < \epsilon \). The behavior of \(\tilde{z}_N(t) \) when \(t \in [0, \frac{k_0 N}{c_+}] \) is characterized by \(T_k, u_k \) and \(A_k \) (as from Theorem 2.5) given by the following relations. Let \(1 \leq k \leq k_0 \), then:

\[
\begin{align*}
\frac{u_k}{N} &= -\left(\frac{c_-}{c_+} \right)^k v_0 \\
\frac{T_k}{N} &= \left(\frac{1}{c_+} - \frac{1}{c_-} \right) k \\
\frac{A_k}{N} &= -\left(\frac{c_-}{c_+} \right)^{k-1} v_0 \frac{1}{c_+}
\end{align*}
\]
Proof: Proposition 3.6 gives us the approximate solution of P_N, which is the acceleration of the solution of S_N. This tells us that at $t_k = \frac{N}{c_+} + \left(\frac{1}{c_+} - \frac{1}{c_-} \right) kN$ velocities change by
\[
\int_{t_k - \varepsilon}^{t_k + \varepsilon} \ddot{z}_N(t) \, dt = \frac{c_+ - c_-}{c_+} \left(\frac{c_-}{c_+} \right)^k v_0
\]
since $p(t)$ is a unit pulse. Since the initial velocity is $u_0 = -v_0$ (with respect to the leader), we obtain the following recursion for the velocities u_k with respect to the leader
\[
u_{k+1} = u_k + \frac{c_+ - c_-}{c_+} \left(\frac{c_-}{c_+} \right)^k v_0 \quad \text{and} \quad u_0 = -v_0
\]
and this gives the first result.

Integrating once more (and noting that $\ddot{z}_N(0) = 0$), we see that the orbit $z_N(t)$ is given by a piecewise affine function whose slope in the interval (t_{k-1}, t_k), with $t_{-1} = 0$, is given by u_k. From this we get the following recursion for the values of the local extrema of A_k of $\ddot{z}_N(t)$.
\[
A_{k+1} = A_k + u_k \left(\frac{1}{c_+} - \frac{1}{c_-} \right) N \quad \text{and} \quad A_1 = -\frac{N}{c_+} v_0
\]
For the intercept times T_k we set $z_N(T_k) = 0$ and get
\[
T_k = t_{k-1} + \tau_k \quad \text{where} \quad A_k + u_k \tau_k = 0 \quad \text{and} \quad T_0 = 0
\]

We note that in the above theorem, our previous conjectures are only sufficient to describe the solution $\dot{z}(t)$ whose second derivative is an ϵ approximation of the second derivative of the true solution $z(t)$. As detailed in the numerical results in the following section, however, the predicted behavior of \ddot{z} is in excellent match with the observed behavior of $z(t)$. We are thus encouraged to believe that the error term remains small after integrating twice.

4 Numerical Tests

To test these predictions (and the conjectures they are based upon), we ran 360 simulations and in each of these we measured 3 quantities. For each $N \in \{100, 200, 400, 800, 1600, 3200\}$ and each of the two boundary conditions in Definition 2.3, we took a grid of 30 parameter values: $\rho_{c,1} \in \{0, -0.1, -0.2, -0.3, -0.4, -0.5\}$ and $g_x \in \{-0.25, \ldots, 1\}$. In accordance with Equation 3.3, this covers all the parameters still available for variation in Equation 2.1, since $\rho_{c,1} = -1/2$ and $|g_x|$ can be set equal to 1 by rescaling time (i.e. by introducing $\tau = \sqrt{|g_x|} t$). We measured three quantities directly from numerical simulations that were done with MATLAB’s ode45 algorithm with the relative and absolute tolerances set to 10^{-6}: the amplitude A_1 (see Figure 2.1), the period T, which is the (average) time elapsed between T_k and T_{k+2} (see Figure 2.1), and the attenuation α, which is the ratio A_3/A_1 (see Figure 2.1). We then compared these with the predicted values obtained in Theorem 3.7. The relative errors (that is: $|\text{measured-predicted}/|\text{predicted}|$) are displayed in the figures below, one for each type of boundary conditions. Note that each pair of points in the figures below represents measurements in each of the 30 grid points. This is a log-log plot, so that the slope corresponds to the power of the decay.

The convergence is slow, as can be seen. It appears to be $O(N^{-1/2})$ for the amplitude and attenuation and $O(N^{-1})$ for the period. It looks like it is not uniform in the parameters nor in the boundary conditions.

5 Further Remarks

In this paper we have formulated and numerically checked a theory that gives an explicit characterization of the transients for nearest neighbor systems of identical linear harmonic damped oscillators. The characterizations are asymptotic in the number of agents. We established that transients will be smallest if the system behaves like the wave equation and gave conditions on the parameters when that happens. In these cases we gave precise quantitative
characterizations of the transients in terms of the parameters of the problem. These characterizations in this generality are new to the literature as is the fact that they are independent of the boundary conditions.

Interestingly, it turns out that good strategies to obtain small transients involve non-symmetric interactions. Other authors ([1], [9], and [11]) have also noticed this phenomenon, but they did so in the context of different models that are not strictly decentralized, such as the model obtained from Equation 2.1 by replacing \(g \) with \(g \dot{z}_k \).

Now that we know the transient as a function of the parameters, it is reasonable to look for an optimal choice of parameters. There are many quantities that could be optimized. To illustrate our point here, we simply look at an index that involves the squares of the amplitudes, and by using Theorem 3.7 we get

\[
I_E \equiv \frac{1}{N^2 v_0^2} \sum_{k=1}^{\infty} A_k^2 = \frac{1}{c_+ - c_-}
\]

Recall that according to that theorem the amplitude of the oscillations actually increase exponentially if \(|c_-| > |c_+|\) (given in Equation 2.4). It is easy to check that this happens whenever \(\rho_{v,-1} \leq -1/2 \). A straightforward calculation shows the following.

Note that \(g_z = 0 \) gives a good coefficient \((I_E = 1) \) but does not spatially align the agents. As an example choose \(g_x = g_v = -2 \), \(\rho_{v,1} = -1/2 \), and let \(\rho_{v,1} \) take the values \(-1/2\) and 0. We take \(N = 400 \) and the leader leaves with velocity \(v_0 = 1 \). The simulations are exhibited in Figure 5.1. The table below gives predictions for the various quantities. It is clear that the asymmetric choice \(\rho_{v,1} = 0 \) far outperforms the symmetric choice \(\rho_{v,1} = -1/2 \).

<table>
<thead>
<tr>
<th>(\rho_{v,1})</th>
<th>(c_+)</th>
<th>(c_-)</th>
<th>(A_1)</th>
<th>(T)</th>
<th>(\alpha)</th>
<th>(I_E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1/2)</td>
<td>1</td>
<td>-1</td>
<td>400</td>
<td>1600</td>
<td>1</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(0)</td>
<td>(1 + \sqrt{2})</td>
<td>(1 - \sqrt{2})</td>
<td>166</td>
<td>2262</td>
<td>0.029</td>
<td>0.177</td>
</tr>
</tbody>
</table>

References

Figure 5.1: Simulations for $N = 400$, $g_x = -2$ and $\rho_{v,1} = -1/2$, regular boundary conditions. In the first picture $\rho_{v,1} = -1/2$, in the second $\rho_{v,1} = 0$. Each color represent the orbit of one of the 400 individual agents. Horizontal is position relative to the leader, vertical is time.

