Abstract

Let \(c_k(b, \nu, a) \) be the \(k \)th positive zero of the function \(bC_\nu(x) + xC'_\nu(x) \), where \(C_\nu(x) = \cos \alpha J_\nu(x) - \sin \alpha Y_\nu(x) \) is the general cylinder function and \(0 \leq a < \pi \). We prove some results on convexity and concavity of \(c_k(b, \nu, a) \) with respect to the variable \(b \) for \(\nu > 0 \). In particular, we establish lower and upper bounds for \(c_1(b, \nu, 0) \). As a consequence we obtain lower and upper bounds for \(c_1(0, \nu, 0) \equiv j'_{\nu,1} \), the first positive zero of the \(J'_\nu(x) \), which are sharper than previously known ones.