Abstract

Let the differential system

\[z^p \frac{df(z)}{dz} = A(z) \cdot f(z), \quad f(z) = (f_1(z), f_2(z), ..., f_k(z)) \] (1)

where \(D \) is the diagonal matrix \(p, p, ..., p \geq 2, p \in \mathbb{N} \) and the elements \(\alpha_{ij}(z) \) of the matrix \(A(z) \) are analytic functions in some neighborhood of the closed unit disc. In this paper under several assumptions with respect to the constant matrices \(\{\alpha_{ij}(0)\}, \{\alpha'_{ij}(0)\}, i, j = 1, 2, ..., k \) and the diagonal \(D \), it is proved that the conjugate system of (1) has exactly \(k(p - 1) \) linearly independent solutions in the product space \(H_2(\Delta)^k \), where \(H_2(\Delta) \) is the usual Hilbert space of analytic functions in the open unit disc.