
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 2580

Digree: A Middleware for a Graph Databases Polystore

Vasilis Spyropoulos, Christina Vasilakopoulou, Yannis Kotidis

Department of Informatics, Athens University of Economics and Business, Athens, Greece
vasspyrop@aueb.gr, cvasilak@aueb.gr, kotidis@aueb.gr

Abstract— In this paper we present Digree, an experimental
middleware system that can execute graph pattern matching
queries over databases hosting voluminous graph datasets.
First, we formally present the employed data model and the
processes of re-writing a query into an equivalent set of
subqueries and subsequently combining the partial results into
the final result set. Our framework guarantees the correctness
and completeness of the produced answers. Then, we present
a prototype implementation of Digree, which is agnostic to the
underlying data processing engines used at the endpoints. As
the experimental results show, in many cases Digree outper-
forms a single node graph database deployment in execution
speed, up to 20 times depending on the query type.

Keywords-graph pattern matching; graph databases

I. INTRODUCTION

Graph data processing is a notable example of the “one
size does not fit all” paradigm. This is due to both the

inherent heterogeneity of the graph data and the diversity

of the different computations that can be performed on

them. Consequently, existing approaches utilize relational

databases [1], [2], big data systems [3], [4], [5], RDF

triple stores [6], [7], or a combination of the above. In this

fragmented environment, it is quite possible that applications

will have to access graph data lying on different ecosystems,

using different underlying storage representations and offer-

ing different query languages to access this data.

In this work, we present a middleware approach that per-

mits execution of pattern matching queries over distributed

or interlinked big-graph datasets hosted by such a network of

independent data sources called endpoints. The middleware

receives graph pattern matching queries, splits them in a

suitable manner that permits their efficient parallel execution

and then assembles all partial results in order to generate the

final result set. We introduce a solid theoretical framework

that ensures the correctness of this process. This framework

is generic, in the sense that it is not tied to a particular

implementation or query language.

Our prototype system, termed Digree, adopts a flexible

architecture where requests for local data processing on the

endpoints are made by implementing a very basic interface

so as to be able to ask for computation of simple path

expressions. Such interfaces can be implemented for native

graph data management systems [8] but also for relational

or big data deployments as well. The proposed middleware

in our prototype is built around a DBMS that is used

to temporarily store the partial results and perform the

required operations so as to produce the final result set. The

underlying endpoints storing the graph data remain fully

functional and can, at the same time, continue to run as

standalone systems.

In the evaluation of our prototype, we used native graph

databases at the nodes and a PostgreSQL DBMS at the

middleware. We are currently working to extend support to

other types of endpoints, such as relational databases and

big data systems like Spark [9]. The latter can also be used

to implement the functionality of our middleware.

Our contribution can be summarized as follows:

• We study the evaluation of a general graph pattern

matching query in a polystore [10] integrating inter-

linked graph databases. We formalize the process of

decomposing a query into a set of smaller patterns, via

a series of transformations. These subqueries can be

executed in parallel, and their results are used to form

the final result set.

• We present a prototype middleware system termed

Digree that implements the aforementioned ideas in

order to orchestrate the query decomposition and result

set composition tasks. We describe a modular imple-

mentation that enables us to use different graph data

implementations at the distributed endpoints.

• We present a series of experiments running on a proto-

type implementation of Digree. We run a set of pattern

matching queries against three different datasets and

discuss the scalability and capabilities of Digree.

II. OVERVIEW

Our work concerns the process of efficiently querying

a polystore of interlinked graph databases. The graph data

model that we employ is one of the most widely adopted

models, namely the labeled property graph model, which

is made up of nodes, relationships, properties and labels.

Consequently, given a pattern query, i.e. a directed graph

with vertices and edges possibly with labels and properties,

the fundamental task is to find subgraphs of the database that

are isomorphic (structurally and semantically) to the pattern

query. This belongs to the (exact) pattern matching problem,

specifically in terms of subgraph isomorphism [11].

The middleware system that we propose takes as input

a pattern query and essentially divides it into all required

smaller parts that are executed in parallel over all graph

2581

database partitions [12],[13]. The middleware then appropri-

ately combines the partial results to produce the global result

set. As it will be made clear from the discussion, Digree
can utilize any graph database system or combination of

those hosting the graph partitions. All that is required is the

existence or implementation of the respective basic API calls

for querying path expressions in the underlying systems.

Bellow, we can see the operations that decompose the

input query and re-synthesize the partial results:

Query

��

ResultSet

Path queries

��

Path results

��

Distributed queries

��

Distributed results

��

Fragment queries

��

Fragment results

��

Primary Fragments

parallel partition searches

��
Partitions results

��

Section III mathematically formalizes the above operations

and illustrates the process via a running example.

III. QUERY REWRITE AND RESULTS COMBINATION

A. Preliminaries

A (finite) directed graph is a pair G = (V,E) where V is

the finite set of vertices and E ⊆ V × V is the finite set of

edges; the first component of an edge pair is the source and

the second is the target. The basic graph theoretic definitions

given below can be found e.g. in [14], [15].

An edge partition {Ei} of G is a set of non-empty disjoint

subsets whose union gives E. If we define {Vi} to be the

set of source and target nodes of edges in {Ei}, every Gi =
(Vi, Ei) is a graph on its own. The family {Gi} of edge-

disjoint subgraphs is a decomposition of G,

G = G1 ∪ ... ∪Gm = (∪iVi,∪iEi).

Notably, {Vi} are not disjoint in principle: if two ad-

jacent edges are located in different partitions, the vertex

in-between is ‘duplicated’ and exists in both respective

subgraphs. Those elements lie in the set

I =

i�=j⋃
1≤i,j≤m

(Vi ∩ Vj) = (V1∩V2)∪(V1∩V3)∪...∪(Vm-1∩Vm).

(1)

The structure of the distributed graph database is as fol-

lows. Starting with the whole graph G = (V,E), vertices are

typically partitioned via some algorithm, and edges’ location

is determined by their source vertex. For our purposes, we

create a duplicate of the end vertex of the cross-partition

edges, labeled with REF ; the original vertex obtains a label

RFD, so that the graph database is in fact decomposed in

parts G1, ..., Gm that constitute an edge partition.

For example, consider a distributed graph database

with two partitions, G1 ∪ G2 = G, and a subgraph

H ⊆ G with VH = {k, l,m, n, o} and EH =
{(k, l), (l, o), (n,m), (m, l)}. If the partition algorithm sends

{k, n} to G1 and {m, l, o} to G2, then {(k, l), (n,m)} ∈ G1

and {(m, l), (l, o)} ∈ G2. A graphic representation is

G1 n

��

k �� lREF mREF

mRFD

��

G2

lRFD �� o
(2)

Some basic properties of the above procedure are the

following:

• A source node is always in the same partition as its

edge, whereas its target inside the same partition may

be a REF copy of the RFD vertex placed elsewhere.

• REF vertices necessarily have no outgoing edges.

• The set of all REF nodes, as well as that of all RFD
nodes, equals I; each RFD node may have REF
duplicates in more than one partition.

A path cover is a set of disjoint paths in G which together

contain all vertices; we denote a k-path as P = (x1, ..., xk).
If we don’t allow paths of length 0, namely single vertices, a

path cover {Gi} forms an edge partition of G. The elements

in the intersection I of the Vi’s are now called join vertices.

A weakly connected graph is a graph where there exists

an undirected path between every pair of vertices. In what

follows, our initial pattern query will always be weakly con-

nected, since otherwise we could take its weakly connected

components and perform the transformations separately.

Our basic task is to identify subgraphs of the graph

database which are graph-isomorphic to an input query.

Two graphs G,H are isomorphic when there is an edge-

preserving bijection f : VG
∼= VH , i.e. such that (x, y) ∈

EG ⇔ (f(x), f(y)) ∈ EH (hence also EG
∼= EH).

As mentioned in the overview, our system is focused on

the labeled property graph data model, elsewhere called di-

rected labeled typed/attributed graph. Vertices can be viewed

as tuples with a unique id, certain labels and properties

(attributes), whereas edges have a source and target vertex,

labels and properties. However, in order to emphasize the

underlying general techniques and ideas, presently we em-

ploy the abstract representation of a plain directed graph.

B. Graph query rewrites

1) Pattern query to path pattern queries: Consider an ar-

bitrary pattern query Q = (V,E). The initial transformation

2582

decomposes the query into a list of edge-disjoint paths, i.e.

specifies a path cover for Q. Any path covering algorithm

from the literature will do and the choice is orthogonal to

our techniques. We chose to use an all-paths algorithm to

discover all possible paths between outer vertices or join

candidate vertices and then select the largest possible paths

that constitute a path cover of the query. The choice is in

a sense independent of the rest of the method: changing it

only affects the intermediate steps and not the final results.

We thus obtain specific simple paths (in a specific order)

Q1, Q2, ..., Qn :
⋃

1≤i≤n

Vi = V and
⋃

1≤i≤n

Ei = E

Therefore this well-defines a function

F : PQ �� PPQn

Q
� �� (Q1, ..., Qn)

(3)

where PQ is the set of all (weakly connected) pattern
queries and PPQ is the set of path pattern queries. The n-th

cartesian product PPQn = PPQ× ...×PPQ is as usually

defined as the set of n-tuples. Notice that this function, like

all functions that follow, is ‘stable under isomorphism’: for

R ∼= Q, F (R) = (R1, ..., Rn) with Ri ∼= Qi.

As a demonstrating example, consider a pattern query Q
with V = {a, b, c, d, e} and E = {(a, b), (b, c), (e, d), (d, b)}

a �� b �� c

d

��

e

��

(4)

The path decomposition operation produces the simple path

queries Q1 = (e, d, b, c), Q2 = (a, b) and the single join

vertex is I = VQ1 ∩ VQ2 = {b}. For simplicity, we denote

the 4-path (e, d, b, c) as Q1 = (x1, x2, x3, x4) and the 2-path

(a, b) as (y1, y2). Hence the image of Q under the function

F : PQ → PPQ× PPQ is

F (Q) = (Q1, Q2) = (e → d → b → c, a → b)

= ((x1, x2, x3, x4), (y1, y2) | x3 ≡ y2)

2) Path to Distributed pattern queries: Suppose we have

a path pattern query P = (x1, ..., xk). The next transforma-

tion determines all the ‘breakpoints’ of the path, in order

to identify all its possible separated sub-parts inside the

partitions of the distributed graph database.

Consider the set VP \{x1, xk} = {x2, ..., xk-1} with size

k-2. This contains precisely the candidate nodes where the

path can be split – with minimal part a single edge – due

to the structure of the distributed graph database: the start

node is necessarily in the same partition as the first edge of

the path, whereas the end node appears inside the last edge’s

partition, even with a REF label. Thus we do not need to

consider {x1, xk} as breakpoints when splitting a path in all

possible non-zero smaller paths.

Since a path can be split up at multiple nodes simultane-

ously, there are as many distributed queries, i.e. our initial

path query together with a specific choice of breakpoints, as

the size of the powerset P(VP \{x1, xk}). This contains all

possible subsets of {x2, ..., xk-1}, and its size is 2k-2. For

simplicity of notation, we denote

{xi1 , xi2 , ..., xiv} ⊆ {x2, ..., xk−1} as

s(i1i2..iv) ∈ P(V \{x1, xk}).
Write s∅ = ∅, which corresponds to the whole path (no

breakpoints). We can now define a function

G : PPQ �� DPQ2k-2

P
� �� ((P, s∅), (P, s(2)), .., (P, s(23)), .., (P, s(23...k-1)))

(5)

where DPQ is the set of all distributed queries. If we start

with F as in (3), we can compose it with G for each path

Q1, ..., Qn:

G : PPQn G1×..×Gn−−−−−−−→ DPQ2k1 -2 × ...×DPQ2kn -2

(6)

with mapping

(Q1, ..., Qn) �→
((Q1, s∅), .., (Q1, s(2..k1-1)), .., (Q

n, s∅), .., (Qn, s(2..kn-1))).

Explicitly, given an arbitrary pattern query, F first decom-

poses it into simple paths of lengths k1, ..., kn and then

G1 × ... × Gn produces all acceptable combinations of

breakpoints of all path queries.

As an example, we identify the distributed queries

for Q as in (4). For the path Q1 = (x1, x2, x3, x4),
VQ1\{x1, x4} = {x2, x3} so there exist k1-2 = 2
possible breakpoints. Their 22 = 4 combinations are

{∅, {x2}, {x3}, {x2, x3}}, thus the function producing its

distributed queries is

G1 : PPQ �� DPQ×DPQ×DPQ×DPQ

Q1 � ��
(
(Q1, ∅), (Q1, {x2}), (Q1, {x3}), (Q1, {x2, x3})

)

For the path Q2 = (y1, y2), we have VQ2\{y1, y2} = ∅,

i.e. no possible breakpoints. Hence 20 = 1 and G2 :
PPQ → DPQ with G2(Q

2) = (Q2, ∅). In total, we have

the composite function G◦F = PQ → PPQ2 → DPQ4+1

mapping Q to

G(F (Q)) =
(
(Q1, ∅), (Q1, {x2}), (Q1, {x3}), (Q1, {x2, x3}),
(Q2, ∅) | x3 = y2

)
(7)

These are the two paths with chosen breakpoints:

(x1 → x2 → x3 → x4, x1 → x2 → x3 → x4,

x1 → x2 → x3 → x4, x1 → x2 → x3 → x4, y1 → x3).

2583

3) Distributed to Fragment pattern queries: The trans-

formation that follows employs the paths’ breakpoints in-

formation to actually split them into smaller paths. Observe

how each element of P(VP \{x1, xk}) uniquely corresponds

to a specific path cover of the simple path P , e.g. {xm} ↔
{(x1, .., xm), (xm, .., xk)}. Hence any distributed query can

equivalently be written as (P1, .., Pr), where all Pi’s are

subpaths such that ∪Pi = P , and the end node of each Pi

concides with the start node of Pi+1.

Based on that, we can describe the fragment pattern
queries (or just fragments) in which every distributed query

divides into. Some general facts are the following.

• # fragment queries= # breakpoints+1.

• # distributed queries with v+1 fragments=
(
k-2
v

)
, e.g.

–
(
k-2
0

)
= 1 distributed query with 1 fragment, for

choosing 0 breakpoints, i.e. the whole P ;

–
(
k-2
1

)
= k-2 distributed queries with 2 fragments,

for choosing all singletons as breakpoints;

–
(
k-2
k-2

)
= 1 distributed query with k-1 fragments, for

choosing k-2 breakpoints, i.e. decomposing into all

its edges.

• # all distributed queries is recovered to be 2k-2 =(
k-2
0

)
+
(
k-2
1

)
+
(
k-2
2

)
+ ...+

(
k-2
k-2

)
.

We can thus express distributed queries in terms of frag-

ments

H : DPQ �� PPQr

(P, s(−))
� �� (P(−)1, ..., P(−)r)

(8)

where P(−)i is determined by the chosen breakpoints s(−):

(P, s(i1..iv)) ↔ (P(i1..iv)1, P(i1..iv)2, .., P(i1..iv)v+1).

Starting with the function G as in (5), we can compose it

with the cartesian product H1 × .. × H2k-2 = H̃ for all

different subsets s(−), namely

DPQ2k-2 →

2k-2︷ ︸︸ ︷
PPQ× PPQ2(

k-2
1) × PPQ3(

k-2
2) × ..× PPQk-1

with mapping

((P,s∅),(P,s(2)),..,(P,s(23)),..,(P,s(2..k-1))) �→
(P,(P(2)1,P(2)2),..,(P(23)1,P(23)2,P(23)3),..,(P(2..k-1)1,..,P(2..k-1)k-1)).

Combining the transformations (3),(5) and (8), we can

compose G1 × ...×Gn as in (6) with H = H̃1 × ...× H̃n

DPQ2k1 -2 × ...×DPQ2kn -2

H��
(PPQ× ...× PPQk1-1)× ...× (PPQ× ...× PPQkn-1)

(9)

with mapping, for some pattern query Q,

((Q1, s∅), .., (Q1, s(2..k1-1)), .., (Q
n, s∅), .., (Qn, s(2..kn-1)))�

��
(Q1, .., Q1

(2..k1-1)k1-1, .., Q
n, .., Qn

(2..kn-1)kn-1).

Notice that if T = 1
(
k-2
0

)
+2

(
k-2
1

)
+3

(
k-2
2

)
+ ...+(k-1)

(
k-2
k-2

)
,

PPQ×PPQ2·(k-2)×PPQ3·(k-2)× ...×PPQk-1 ∼= PPQT

hence the image of H is PPQT1 × ..× PPQTn .

Back to the example query (4), having computed its

distributed queries in (7), we can now identify its fragment

queries. For Q1, we have k1 = 4 so there are
(
2
0

)
= 1,(

2
1

)
= 2,

(
2
2

)
= 1 distributed queries with 0 + 1 = 1,

1 + 1 = 2, 2 + 1 = 3 fragment queries respectively. The

function H̃1 : DPQ4 → PPQ×PPQ2 ×PPQ2 ×PPQ3

has as image the list of fragment queries

(Q1, (Q1
(2)1, Q

1
(2)2), (Q

1
(3)1, Q

1
(3)2), (Q

1
(23)1, Q

1
(23)2, Q

1
(23)3)) =(

(x1, x2, x3, x4), (x1, x2), (x2, x3, x4), (x1, x2, x3),

(x3, x4), (x1, x2), (x2, x3), (x3, x4)
)

For Q2 we have k2 = 2 so H̃2 : DPQ → PPQ with image

the only fragment query Q2 = (y1, y2). The product of those

two functions is composed with G ◦ F to give

PQ
F−→ PPQ2 G−→ DPQ5 H−→ PPQ(1+2+2+3)+1

with mapping the total list of 10 fragment queries

(
x1 → x2 → x3 → x4, x1 → x2, x2 → x3 → x4,

x1 → x2 → x3, x3 → x4, x1 → x2, x2 → x3,

x3 → x4, y1 → y2 | y2 ≡ x3

)
(10)

4) Fragment queries to Primary Fragments: In the final

list of all fragments (P, P(2)1, ..., P(2..k-1)k-1) for a path,

some entries turn out to be identical, e.g. P(2)1 = (x1, x2) =
P(23)1. In this section, the described transformation distin-

guishes all the unique elements from that list.

We thus consider the primary fragments of a path, i.e. all

distinct subpaths that are essential to build it up in all ways;

for P = (x1, .., xk) they are the following:

· #(k-1) 2-paths (x1, x2), (x2, x3), . . . , (xk-1, xk);
· #(k-2) 3-paths (x1, x2, x3), . . . , (xk-2, xk-1, xk); (. . .)
· #

(
k-(k-2) = 2

)
[k-1]-paths (x1, .., xk-1), (x2, .., xk);

· #
(
k-(k-1) = 1

)
k-path (x1, .., xk).

In total, we have the above (k-1) + (k-2) + ... + 1 =
(k-1)k

2 subpaths, which in combination make up all fragment

queries.

In order to correspond these to fragments of the previous

general form P(−)i, so as to be able to discriminate the latter

between primary and non-primary, we make the following

choices which focus on their source/target:

2584

- subpaths of the form (x1, .., xi) or (xi, .., xk) — in-

cluding the start or end path vertex — are P(i)1 or

P(i)2;

- subpaths of the form (xi, .., xj) where 1 < i < j < k
— including only intermediate vertices — are P(ij)2;

- (x1, .., xk) is just P .

Therefore the above collections of primary fragments are

the 2-paths P(2)1, P(23)2, ..., P(k-2 k-1)2, P(k-1)2, the 3-paths

P(3)1, P(24)2, ..., P(k-3 k-1)2, P(k-2)2 and so on. We can now

formulate all fragment queries only using primary fragments,

as claimed: for breakpoints {xm1
, ..., xmv

}, we have

(P(m1..mv)1, P(m1..mv)2, .., P(m1..mv)v+1) ≡
(P(m1)1, P(m1m2)2, P(m2m3)2, .., P(mv)2). (11)

Conclusively, out of the full list of fragments for P , the

primary ones are the path itself, both fragments from choos-

ing any single breakpoint (of the form P(i)1, P(i)2) and the

second fragments from choosing any two breakpoints (of the

form P(ij)2). Hence the set of primary fragments is precisely

PFP = {P, P(i)1, P(i)2, P(ij)2 | 2 ≤ i ≤ k-1, i < j ≤ k-1}.
(12)

We can now define a function

K : PPQT �� PF

(P, P(2)1, P(2)2, ..., P(2..k-1)k-1)
� �� PFP

(13)

where PF is the set {PFQ | any Q ∈ PQ} of all sets of

primary fragments for pattern queries. Combining K with

all the previous transformations, we can compose (9) with

PPQT1+...+Tn
K−−−−−→ PF (14)

which maps all fragments from all path queries Q1, ..., Qn

to the union of their primary fragments:

(Q1, Q1
(2)1, .., Q

1
(2..k1-1)k1-1, .., Q

n, .., Qn
(2...kn-1)kn-1)�

��
{Qu, Qu

(iu)1
, Qu

(iu)2
, Qu

(iuju)2
| 2≤iu≤ku-1,iu<ju≤ku-1}1≤u≤n.

The image of this final step is PFQ = PFQ1 ∪ ...∪ PFQn .

Notice how, since all Q1, .., Qn are edge-disjoint, the sets

PFQu are all distinct from each other.

Proposition 1: The total number of primary fragments for

an arbitrary pattern query Q is

1≤u≤n∑ ku(ku − 1)

2

where n is the number of simple paths it decomposes into,

and k1, .., kn are the respective path lengths.

We can now compose all defined functions (3,6,9,14) in

order to obtain the transformation M; given an arbitrary

pattern query Q, it produces the set of its primary fragments

M(Q) := PFQ. Graphically,

PQ
F

��

M
��

PPQn G
�� DPQ2k1 -2 × ..×DPQ2kn -2

H
��

PPQT1 × ...× PPQTn

K
��

PF.

This fulfills the purpose of the current section; an operation

which decomposes any pattern query into all fragments

necessary to reconstruct it is established.

For our example pattern query (4), we have

PFQ1 ={Q1, Q1
(2)1, Q

1
(2)2, Q

1
(3)1, Q

1
(3)2, Q

1
(23)2} =

{(x1, x2, x3, x4), (x1, x2), (x2, x3, x4),

(x1, x2, x3), (x3, x4), (x2, x3)}
PFQ2 ={Q2} = {(y1, y2)}

so via PQ
F−→ PPQ2 G−→ DPQ5 H−→ PPQ10 K−→ PF we

have the full set of primary fragments for Q

M(Q) = PFQ =PFQ1 ∪ PFQ2 = {x1 → x2 → x3 → x4,

x1 → x2, x2 → x3 → x4, x1 → x2 → x3,

x3 → x4, x2 → x3, y1 → y2 | y2 ≡ x3}
(15)

with precisely
4(4−1)

2 + 2(2−1)
2 = 6 + 1 = 7 elements;

compare with the list (10) of 10 elements, some of them

unneeded duplicates.

C. Partition results combination

1) Primary fragments to Fragment Result Sets: The next

step is to execute searches in the partitions G1, ..., Gm of

our distributed graph database G, in order to identify paths

isomorphic to the primary fragments, and then appropriately

‘join’ them in order to reconstruct some part of the initial

query. Due to the REF and RFD characteristic discussed

in III-A, we can add further restrictions for the start/end

vertices of the fragment paths — in order to reduce the

candidate vertices — based on whether a fragment located

in some partition is destined to be joined with another of a

different partition.

For some partition Gw ∈ {G1, ..., Gm}, define the sets of

vertices Rw = {x ∈ Vw | x is REF}, Dw = {x ∈ Vw |
x is RFD}. Notably Rw ∩Dw = ∅, since the RFD label

pins the ‘real’ location of the vertex based on the partitioning

algorithm, whereas all REF -labeled vertices are copies in

different partitions. If we consider all such vertices from all

partitions,

RG = R1 ∪ ... ∪Rm = I = D1 ∪ ... ∪Dm = DG

for I the set of all duplicated vertices as in (1).

2585

Define the following four classes of partition fragment
result sets, corresponding to the four types of primary

fragments for each path Qu as in (12):

FRSGw
(Qu) ={Q̄ ∈ Gw | Q̄ ∼= Qu} (16)

FRSGw
(Qu

(i)1) ={Q̄ ∈ Gw | Q̄ ∼= Qu
(i)1∧eQ̄∈Rw}

FRSGw(Q
u
(i)2) ={Q̄ ∈ Gw | Q̄ ∼= Qu

(i)2∧sQ̄∈Dw}
FRSGw

(Qu
(ij)2) ={Q̄ ∈ Gw | Q̄ ∼= Qu

(ij)2∧eQ̄∈Rw∧sQ̄∈Dw}
For each primary fragment of each path of Q, we take the

union of these sets to form the following
∑n

u=1
ku(ku-1)

2
fragment result sets

FRSu
− ≡ FRS(Qu

−) := FRSG1
(Qu

−)∪ ...∪FRSGm
(Qu

−).
(17)

Specifically, we have FRSu = {Q̄ ∈ G | Q̄ ∼= Qu},

FRSu
(i)1 = {Q̄ ∈ Gw | Q̄ ∼= Qu

(i)1∧eQ̄ ∈ Rw for some w},

FRSu
(i)2 = {Q̄ ∈ G | Q̄ ∼= Qu

(i)2 ∧ sQ̄ ∈ DG}
and FRSu

(ij)2 = {Q̄ ∈ Gw | Q̄ ∼= Qu
(ij)2 ∧ eQ̄ ∈

Rw for some w}. These sets contain all isomorphic in-

stances of the primary fragments in the database, all together

in large collections, where the partition from which each of

them originates is forgotten.

In general, it is convenient to think of these sets FRSu
− as

relational tables, with attributes the ‘names’ of the vertices

of Q they refer to, and tuples the graph-isomorphic paths

appearing in the partitions.

We can now define the full set of fragment result sets for

a specific pattern query Q:

FRSQ = {FRSu, FRSu
(i)1, FRSu

(i)2, FRSu
(ij)2}

with 1 ≤ u ≤ n and appropriate ranges for i, j. If FRS =
{FRSQ | any Q} is the set of all sets of fragment result

sets for arbitrary pattern queries, consider the function

F : PF �� FRS

PFQ = {Qu
−} � �� FRSQ = {FRSu

−}
(18)

Clearly, the size of FRSQ is also
∑ ku(ku−1)

2 .

For our example pattern query as in (4), the 7 fragment

result sets are of the form

FRS1 := FRS1 ={[x1 → x2 → x3 → x4]}
FRS2 := FRS1

(2)1 ={[x1 → x2] | x2 is REF}
FRS3 := FRS1

(2)2 ={[x2 → x3 → x4] | x2 is RFD}
FRS4 := FRS1

(3)1 ={[x1 → x2 → x3] | x3 is REF}
FRS5 := FRS1

(3)2 ={[x3 → x4] | x3 is RFD}
FRS6 := FRS1

(23)2 ={[x2 → x3] | x2 is RFD ∧ x3 is REF}
FRS7 := FRS2 ={[y1 → y2]}

where [−] denotes all the graph-isomorphic instances of the

path arising in some partition of G. The mapping F(PFQ) =

FRSQ is the set containing all the above sets, with the

condition that y2 = x3.

Remark 1: There may be cases when certain primary

fragments of some pattern query Q are graph-isomorphic.

It is then not required to search the partitions multiple

times; rather it seems optimal to first identify them and only

query once. For the above example, PFQ as in (15) already

includes some isomorphic fragments, e.g. Q1
(2)1

∼= Q1
(3)2

∼=
Q1

(23)2
∼= Q2: these are all (isomorphic) 2-paths. Hence if we

populate the set/table FRS2, we can then obtain FRS1
(2)1,

FRS1
(3)2 and FRS1

(23)2 by selecting the ones with the extra

label restrictions, rather than querying three more times.
2) Fragment Result Sets to Distributed Result Sets: After

querying the database to specify (populate, when viewed as

tables) all the separate FRS(Qu
−)’s in the previous step,

we can form sets of isomorphic instances of the distributed

queries for Q, which will be constructed ‘algebraically’ from

the fragment result sets.

An important advantage of viewing result sets as relational

tables is that we can join them in the usual sense, i.e. employ

extension of natural join �� of binary relations, as described

in [16]. We can construct various joins of the fragment result

sets of some path P , e.g.

FRS(i)1 �� FRS(i)2 = {(y1, ..., yk) |
(y1, ..., yi) ∈ FRS(i)1 ∧ (yi, ..., yk) ∈ FRS(i)2}.

The other cases needed for our purposes are FRS(i)1 ��
FRS(ij)2, FRS(ij)2 �� FRS(jk)2 and FRS(ij)2 ��
FRS(j)2, for all appropriate i, j, k.

For Q decomposed in paths {Q1, ..., Qn}, we define the

distributed result sets

DRSu
1 ≡DRS(Qu, ∅) = FRSu (19)

DRSu
(i)≡DRS(Qu, s(i)) = FRSu

(i)1 �� FRSu
(i)2

DRSu
(ij)≡DRS(Qu, s(ij)) = FRSu

(i)1 �� FRSu
(ij)2 �� FRSu

(j)2

DRSu
(ijk)≡DRS(Qu, s(ijk)) = FRSu

(i)1 �� FRSu
(ij)2

�� FRSu
(jk)2 �� FRSu

(k)2 etc.

where each set is formed following the reconstruction rules

of fragment queries from primary fragments from (11).

Obviously, for any such Q with lengths of paths k1, .., kn,

the total number of the distributed result sets/tables is∑n
u=1 2

ku-2.

We can now define the set of all distributed result sets

DRSQ = {DRSu
1 , DRSu

(i), DRSu
(ij), ... | 1 ≤ u ≤ n}

as well as the set of all sets of distributed result sets for

arbitrary pattern queries, DRS = {DRSQ | any Q}. We can

now define a function using the join construction formulas

D : FRS �� DRS

FRSQ = {FRSu
−} � �� DRSQ = {DRSu

1 , DRSu
(i), ..}

(20)

2586

In our example (4), we have the following 22 + 20 = 5
distributed result sets:

DRS1
1={[x1→x2→x3→x4]}

DRS1
(2)={x1→x2→x3→x4|x1→x2∈FRS1

(2)1∧x2→x3→x4∈FRS1
(2)2}

DRS1
(3)={x1→x2→x3→x4|x1→x2→x3∈FRS1

(3)1∧x3→x4∈FRS1
(3)2}

DRS1
(23)={x1→x2→x3→x4|x1→x2∈FRS1

(2)1∧x2→x3∈FRS1
(23)2

∧x3→x4∈FRS1
(4)2}

DRS2
1={[y1→y2]}

Notice that these sets contain multiple graph-isomorphic

paths to Q1 and Q2 obtained in different ways, and the

‘names’ xi are only used as attributes of the tables where the

tuples of these sets are stored in. The image D(F(PFQ)) =
DRSQ contains all these sets, with the condition y2 = x3.

3) Distributed Result Sets to Path Result Sets: Having

specified all isomorphic distributed queries arising in the

database — which are in fact the paths Q1, ..., Qn formed

by joining fragments in different intermediate nodes each

time — we now wish to assemble the whole result table for

each path, ignoring the way they were constructed.

Define the path result set to be the union of those DRSu
(−)

for each path Qu ∈ {Q1, ..., Qn} individually:

PRSu = DRSu
1 ∪DRSu

(2) ∪DRSu
(3) ∪ .. ∪DRSu

(23..k-1)

(21)

Consider the set PRSQ = {PRS1, ..., PRSn} of all path

result sets. If PRS = {PRSQ | any Q} contains all sets

of path result sets for arbitrary pattern queries, we form the

transformation

P : DRS �� PRS

DRSQ = {DRSu
(−)}nu=1

� �� PRSQ = {PRSu}nu=1.

(22)

For our example query (4), we obtain the following path

result sets for Q1 and Q2:

PRS1=DRS1
1∪DRS1

(2)∪DRS1
(3)∪DRS1

(23)={x1→x2→x3→x4|
x1→x2→x3→x4∈FRS1∨

(
x1→x2∈FRS2∧x2→x3→x4∈FRS3

)
∨(

x1→x2→x3∈FRS4∧x3→x4∈FRS5

)
∨(

x1→x2∈FRS2∧x2→x3∈FRS6∧x3→x4∈FRS5)
}

PRS2=DRS2
1={[y1→y2]}.

Hence the image of the composition of the transformations

gives P(D(F(PFQ))) = PRSQ = {PRS1, PRS2 | x3 ≡
y2}.

4) Path Result Sets to Base Result Sets: Now that we

have gathered all paths that are isomorphic to Q1, ..., Qn

inside the distributed graph database, we recall that the join
vertices of the weakly connected pattern query Q constitute

common ‘attributes’ of the path queries results when stored

in tables. Thus we can form the base result set

BRSQ = PRS1 �� PRS2 �� ... �� PRSn (23)

where the natural join is performed over the common (join)

vertices of the paths. Consequently, we can view the set

BRSQ as a table, with attributes the names of the discrete

vertices of Q, and tuples all of its isomorphic subgraphs

inside G. If BRS = {BRSQ | ∀Q ∈ PQ} ⊆ P(PQ) is the

set of all sets of base result sets for arbitrary Q’s, the above

join defines the transformation

B : PRS �� BRS

PRSQ = {PRS1, ..., PRSn} � �� BRSQ.

(24)

The full process of assembling the results of primary

fragments in the partitions into isomorphic instances of the

initial query is thus given by the composite transformation

of (18,20,22,24)

PF
F ��

L
��

FRS
D �� DRS

P��
PRS

B��
BRS

For the example query Q as in (4), we end up with

B(P(D(F(PFQ)))) = PRS1 �� PRS2 =

{(x1,x2,x3,x4,y1)|(x1,x2,x3,x4)∈PRS1∧(y1,x3)∈PRS2}

where the join is performed over the unique join vertex

in J = {x3}. Notice that this result set BRSQ of all

isomorphic subgraphs to Q would contain also H of the

distributed setting example (2):

(n,mREF) ∈ FRS1
(2)1 ∧ (mRFD, l, o) ∈ FRS1

(2)2 ⇒
(n,m, l, o) ∈ DRS1

(2) ⊆ PRS1,

(k, l) ∈ FRS2 = DRS2 = PRS2.

We conclude with a result which ensures the validity of

our method (we omit the proof due to space restriction).

Theorem 1: By performing the series of transformations

L ◦M depicted by the dotted line

PPQT1 × ..× PPQTn �� PF

��

L

��

DPQ2k1 -2 × ..×DPQ2kn -2

��

FRS

��
PPQn

��

DRS

��
PQ

��

L◦M ��

M

��

BRS PRS		

we obtain all isomorphic instances of the initial query Q in

the distributed graph database.

2587

IV. EXPERIMENTAL EVALUATION

A. Implementation Details and Setup

The Digree prototype is implemented as a middleware

system that spans over a set of distributed graph databases.

It consists of two separate software units, the master and the

slave. A basic Digree deployment is consisted of one master

node, k slave nodes and an extra database node. Each slave

node is assigned a graph partition that is loaded in a graph

data management system (e.g. graph database, relational

database or other). While in our prototype implementation

we use Neo4j to manage each graph partition, this is not

a restrictive choice. In order to use a different data store

(or a combination of different data stores), all is required

is the interfaces to the respective query languages or APIs.

We deployed our system on a cluster consisting of 18 Linux

virtual machines. Each machine had 4 cpus and 8 GB of

memory. We used one machine to run the master process,

one machine to host a PostgreSQL database server and the

rest 16 machines to host the partitions of the graph database

(one Neo4j database per node) and the slave processes. For

comparison purposes we used a virtual machine of the same

specifications to run the queries on a stand alone Neo4j

instance loaded with the unpartitioned dataset (from now

on refered to as single-node).

B. Datasets

We used three real world datasets for our experiments.

The first two are the amazon product network1 [17] and the

youtube video graph.2 The third dataset that we used is an

anonymized twitter users graph parsed by our team. The

details of the datasets are shown in Table I (size refers to a

single partition Neo4j database size on disk). For partitioning

the smaller datasets (amazon and youtube) we used the

popular METIS [18] algorithm, while for the twitter dataset

we used the online partitioning algorithm LDG [19] since

METIS could not handle that large an input.

Table I
DATASETS OVERVIEW

#nodes #edges #labels size

amazon 548.552 1,788,725 11 99.6 MB
youtube 155,513 2,969,826 14 161.8 MB
twitter 35,648,794 910,526,369 232 30.85 GB

C. Experiments

1) Pattern Queries: For each of the datasets we built a

set of pattern matching queries. Specifically we used seven

pattern queries used in [1] (depicted in Figure 1). For each

of the datasets and for each pattern query we created ten

instances, each with a different random set of node labels.

1https://snap.stanford.edu/data/
2http://netsg.cs.sfu.ca/youtubedata/

We set a time limit of 1000 seconds for the queries to finish

execution, in order to reduce the effect of strangling queries

in the average computation for either system. In Figure 2(a)

we provide the average execution time of the finished queries

run in single-node and Digree, while in Figure 3(a) we

present the percentage of the queries that returned their result

set within the time limit. We can see that for the smaller

datasets (amazon and youtube) the differences between the

two implementation are not significant. Nevertheless, Digree
manages to produce reduced query times because of the

effect of parallel execution. For the larger dataset (twitter),

where the graph cannot fit in the main memory of the

single-node instance, the results are more interesting. Not

only execution time is more than halfway down, but Digree
also manages to answer more queries than the single-node

(96% against 89%) within the time limit. For the rest of the

experiments we present results only for the larger dataset

(twitter) since Digree is aimed for big datasets that don’t

easily fit on main memory of a single node.

2) Mutated Pattern Queries: We continued by using the

pattern queries from the previous experiment and creating

a number of mutations for each of those. These mutations

have been created by randomly choosing a vertex from the

graph query and attaching a new vertex to it, randomly

incoming or outgoing. We refer to the number of vertices

added as the mutation degree. For each pattern query we

created mutations with degree from 1 to 5 and for each one

we created 10 query instances, each with a different random

set of labels. We applied the same time limit as before and

the results are shown in Figures 2(b) and 3(b). For this more

challenging set of queries Digree reduces execution time

to less than one third of the time required for single-node

execution. Moreover, it manages in answering more queries

within the time limit than the single-node.

3) Path Queries: Digree utilizes path queries as its basic

tool of decomposing a complex graph pattern. In the final ex-

periment we demonstrate the effect of parallel processing of

path queries that result in the reduced query times observed

in the previous experiments. We used path queries varying in

length from 3 to 8 vertices. For each path length we created

100 query instances, each with a different random set of

labels and we used the same time limit as before. The results

are presented in Figures 2(c) and 3(c). Digree manages to

execute the queries in a small fraction of the time requirered

by single-node, showing a small increase in execution time

as the length of the path increases. Digree is between 9 and

20 times faster that the single-node deployment.

V. RELATED WORK

There exists a number of distributed graph databases.

Trinity [20] is an in-memory distributed graph database

used for online query processing and offline analytics on

large graphs as well as for subgraph matching [21]. Titan

is an open source graph database layered upon a distributed

2588

Q1

A

B

C D

Q2

A

B

D C

Q3

A

B

C

D

E

Q4

A

B

DE

C

Q5

A

B

C

D

E

Q6

E

C

A

B

D

F

Q7

A

B

C

Figure 1. The pattern queries used in the experiments

(a) pattern queries (b) mutated pattern queries (c) path queries

Figure 2. Average execution time

(a) pattern queries (b) mutated pattern queries (c) path queries

Figure 3. Percentage of queries answered within time limit of 1000 seconds

NoSQL database like HBase. ThingSpan [22] is a commer-

cial graph analytics platform that handles very large graphs

by utilizing a number of open source big data tools. Digree
can act as a middleware so as to utilize any such system or

combination of systems deployed at the graph partitions.

A number of systems were developed for distributed graph

processing such as Google Pregel [4], it’s open source

alternative Apache Giraph [23] and GraphX [3]. These

systems are not specialized in graph pattern matching but

are frameworks that provide a programming model for the

user to develop and deploy graph algorithms.

A work that concentrates on distributed pattern matching

can be found in [1] where the authors use relational data

storage and their work is closely related to traditional

database system query optimization. Digree can easily oper-

ate over relational graph management solutions, by building

the required API calls. In [24] the authors propose algo-

rithms that use the message passing model and apply their

ideas for graph simulation [25], while in [26] the authors

propose a distributed solution for graph mining. In [27] the

authors present GraphMat, a framework for writing high

performance parallel graph algorithms taking advantage of

multicore architectures in a single-node deployment. In [28]

the authors present PSgL, a distributed solution for subgraph

listing, which is a special case of matching when all vertices

have the same label. A large amount of related work exists

in the context of semantic web. In [6] the authors propose an

approach where a SPARQL query is executed at all partitions

and partial RDF matches of it are then assembled so as to

build the cross-partition results, while in [29] the authors

focus on data partitioning and propose a mapreduce based

join solution for inter-partition query answering. In [30] the

authors propose a partitioning of the RDF data that adopts

to workload changes in order to better support queries.

The authors in [7] focus on graph partitioning and how it

affects their mapreduce based system performance. In [31]

the authors examine how caching of SPARQL query results

can favor execution of queries over large RDF graphs.

2589

VI. CONCLUSION

In this paper we presented Digree, a middleware to handle

graph pattern matching queries over a distributed graph

database or inter-linked graph databases. We developed a

solid theoretical base to rewrite a graph query so as to

be executed in a distributed setting in parallel, but also to

combine back the partial results into the final result set.

We presented a prototype implementation of Digree and

demonstrated its capacity in reducing execution times of

complex pattern matching queries, especially for datasets

that do not fit in main memory of a single node. As future

work, we plan to compare with other systems such as

GraphX [3] and to use a variety of systems to manage the

graph partitions or the central processing engine of Digree.

REFERENCES

[1] J. Huang, K. Venkatraman, and D. J. Abadi, “Query optimiza-
tion of distributed pattern matching,” in ICDE, 2014.

[2] D. Bleco and Y. Kotidis, “Graph analytics on massive collec-
tions of small graphs,” in Proceedings of EDBT, 2014.

[3] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica,
“Graphx: A resilient distributed graph system on spark,” in
First International Workshop on Graph Data Management
Experiences and Systems, ser. GRADES ’13, 2013.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-
scale graph processing,” in Proc. of the ACM SIGMOD, 2010.

[5] V. Spyropoulos and Y. Kotidis, “Dynamic partitioning of big
hierarchical graphs,” in Proceedings of the First International
Workshop on Big Dynamic Distributed Data, 2013.

[6] P. Peng, L. Zou, M. T. Özsu, L. Chen, and D. Zhao,
“Processing sparql queries over distributed rdf graphs,” The
VLDB Journal, vol. 25, no. 2, pp. 243–268, Apr. 2016.

[7] J. Huang, D. J. Abadi, and K. Ren, “Scalable sparql querying
of large rdf graphs,” PVLDB, vol. 4, no. 11, 2011.

[8] (2016, aug) Neo4j. [Online]. Available: http://neo4j.com/

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, 2010.

[10] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska,
U. Cetintemel, V. Gadepally, J. Heer, B. Howe, J. Kepner,
T. Kraska, S. Madden, D. Maier, T. Mattson, S. Papadopou-
los, J. Parkhurst, N. Tatbul, M. Vartak, and S. Zdonik, “A
demonstration of the bigdawg polystore system,” Proc. VLDB
Endow., Aug. 2015.

[11] B. Gallagher, “Matching structure and semantics: A survey
on graph-based pattern matching,” AAAI FS, vol. 6, 2006.

[12] I. Filippidou and Y. Kotidis, “Online and on-demand partition-
ing of streaming graphs,” in Proceedings of the 2015 IEEE
International Conference on Big Data (Big Data), 2015.

[13] I. Filippidou and Y. Kotidis, “Online partitioning of multi-
labeled graphs,” in Proceedings of the GRADES, 2015.

[14] R. Diestel, Graph Theory, ser. Graduate Texts in Mathematics.
Springer, 1997, no. 173.

[15] J.-A. Bondy and U. S. R. Murty, Graph theory, ser. Graduate
texts in mathematics. New York, London: Springer, 2007.

[16] E. F. Codd, “A relational model of data for large shared data
banks,” Commun. ACM, vol. 13, no. 6, pp. 377–387, 1970.

[17] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The
dynamics of viral marketing,” ACM Trans. Web, 2007.

[18] G. Karypis and V. Kumar, “Analysis of multilevel graph
partitioning,” in Proceedings of IEEE/ACM SC Conf., 1995.

[19] I. Stanton and G. Kliot, “Streaming graph partitioning for
large distributed graphs,” in Proc. of ACM SIGKDD, 2012.

[20] Y. L. Bin Shao, Haixun Wang, “Trinity: A distributed graph
engine on a memory cloud,” in Proc. of SIGMOD, 2013.

[21] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient
subgraph matching on billion node graphs,” Proc. VLDB
Endow., 2012.

[22] (2016, aug) Thingspan. [Online]. Available: http://www.
objectivity.com/

[23] M. Han and K. Daudjee, “Giraph unchained: Barrierless asyn-
chronous parallel execution in pregel-like graph processing
systems,” Proc. VLDB Endow., vol. 8, no. 9, May 2015.

[24] S. Ma, Y. Cao, J. Huai, and T. Wo, “Distributed graph pattern
matching,” in Proceedings of WWW, 2012, pp. 949–958.

[25] W. Fan, X. Wang, Y. Wu, and D. Deng, “Distributed graph
simulation: Impossibility and possibility,” Proc. VLDB En-
dow., vol. 7, no. 12, pp. 1083–1094, Aug. 2014.

[26] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos,
M. J. Zaki, and A. Aboulnaga, “Arabesque: A system for
distributed graph mining,” in Proceedings of SOSP, 2015.

[27] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor,
M. J. Anderson, S. G. Vadlamudi, D. Das, and P. Dubey,
“Graphmat: High performance graph analytics made produc-
tive,” Proc. VLDB, vol. 8, no. 11, pp. 1214–1225, Jul. 2015.

[28] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu, “Parallel
subgraph listing in a large-scale graph,” in Proc. of the 2014
ACM SIGMOD Int. Conference on Management of Data.

[29] K. Lee and L. Liu, “Scaling queries over big rdf graphs
with semantic hash partitioning,” Proc. VLDB Endow., vol. 6,
no. 14, pp. 1894–1905, Sep. 2013.

[30] R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, Y. Ebrahim,
and M. Sahli, “Accelerating sparql queries by exploiting hash-
based locality and adaptive partitioning,” The VLDB Journal,
2016.

[31] N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris,
“Graph-aware, workload-adaptive sparql query caching,” in
Proc. of ACM SIGMOD, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

